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Motion planning and control for autonomous vehicles are complex tasks that must be done 

in order for a ground robot to operate in a cluttered environment. This dissertation presents the 

theory, implementation, and test results for some new and novel Receding Horizon Control 

(RHC) techniques that allow these tasks to be unified into one. 

The first new method is called Heuristic Receding Horizon Control (HRHC), and uses a 

modified A* search to fulfill the online optimization required by RHC. The second is called 

Dual-Frequency Receding Horizon Control (DFRHC), and is used to simplify the trajectory 

planning process during the RHC optimization. 

Both methods are combined together to form a practical implementation, which is 

discussed in detail. The autonomous ground vehicle, the NaviGator, developed at the Center for 

Intelligent Machines and Robotics, serves as a platform for the implementation and testing 

discussed. 

Finally, data and their analysis are presented. The results obtained help to support the 

theoretical and practical claims made by this dissertation. 
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CHAPTER 1 
INTRODUCTION 

Everyday more and more robotic vehicles are entering the real world. They are being put to 

work just about everywhere manual vehicles have been used in the past. From agriculture, and 

mining operations, to inside factories and hospitals, they are increasing safety, efficiency, and 

performance in all tasks otherwise considered to be too dull, dirty or dangerous for manual labor. 

Unmanned vehicles are being used intensely by militaries worldwide. The United States 

for example, has already been using unmanned air vehicles for several years to patrol the skies 

over conflicts in foreign lands. Recently, by congressional mandate, the U.S. Army has set a goal 

to have one-third of all operational ground combat vehicles operating unmanned by the year 

2015 [US00]. This is a difficult feat that, if achieved, will save countless American lives on the 

battlefields of tomorrow. 

The recent explosion of unmanned vehicle technology has been made possible by vast 

improvements in sensors, computers and research developments. There is now a greater 

understanding of the problems that need to be solved in order to allow autonomous machines to 

operate in the largely uncertain real world. Yet despite all of the advancements, there is still 

room for improvement and much work to be done. 

Background 

Unmanned vehicles are designed to perform a variety of tasks, which they perform with 

varying levels of independence. While some unmanned machines are rigidly controlled by 

human operators, via telemetry and wireless input, others are sent about with little to no 

assistance. These are the type of unmanned vehicles under consideration in this dissertation. 

They fall into the category known as autonomous vehicles. Autonomous vehicles are operated 

under human control at the highest of levels. Instructions here may simply command the vehicle 
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to reach a goal point or follow a corridor. Commands may also be issued on an even higher level 

describing an abstract mission, such as patrolling a perimeter, or sweeping through a defined 

area. At these levels, the robot is given a higher amount of command and control authority. 

Consequently, the less input provided by the operator, the more influence the machine has over 

its own actions. 

Autonomous vehicles pose a number of unique problems in their design and 

implementation. There is no longer a human-in-the-loop control scheme for the vehicle. The 

unmanned system itself must close the loop from environment feedback to low-level vehicle 

control. Where a human operator would normally analyze data feedback from telemetry, remote 

video, etc. and then decide the best course of action, designers must now instrument the vehicle 

so it can automate these tasks. This requires the inclusion of internal state and environmental 

sensors, along with onboard computers and software capable of processing the sensed 

information and planning the vehicle’s action accordingly. One way of formalizing this overall 

process is known as the sense-plan-act paradigm for robotic development [NIL98]. It is a 

breakdown of the complete design into compartmentalized tasks and processes, which allows for 

ease of implementation of the whole system in general. 

The first design step in the sense-plan-act paradigm is the inclusion of different types of 

sensors onto the vehicle platform. These sensors serve two general purposes. The first is to 

measure the state of the vehicle itself, such as its position, orientation, speed, and perhaps also 

health monitoring information such as temperatures, pressures, etc. In humans, this is known as 

proprioception, a word derived from the combination of the Latin proprius, meaning “one's own” 

and perception. It is a vital part of the robotic system; without proprioceptive sensors the vehicle 
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would not have the feedback necessary to be able to control itself, regardless of environmental 

conditions. 

The complement of proprioception is exteroception. This is the system’s ability to sense 

information originating outside of itself. It is the ability to sense one’s environment. Sensors such 

as cameras and range detectors provide this information. The job of the system designer is to 

outfit the autonomous vehicle with those sensors necessary and appropriate to provide the correct 

environment feedback, thus allowing the system to decide how to act within it. 

A key note of importance is that accurate internal state estimates are critical in order to be 

able to make sense out of exteroceptive information. An example that helps to understand this is 

the estimation of a camera’s orientation on a vehicle. Without knowing a camera’s orientation in 

the environment, it is impossible for the robot to be able to know where the sensed images are 

coming from. This means that the robot must be aware of its own orientation before it can use 

the camera information. The same is true for other environment sensors, and thus it is necessary 

to have valid proprioceptive state estimates before analyzing exteroceptive information. 

Designers face the problem of ensuring the validity of information from both types of 

sensors. This problem becomes very difficult in the presence of noise and other uncertainty, 

which is always the case in real world implementations, and therefore it requires careful attention 

from design through implementation. 

The second step in the sense-plan-act design is giving the autonomous vehicle the ability to 

calculate how to react to sensed internal and external information. This step requires the 

unmanned vehicle to have the necessary processing and computational power along with the 

algorithms and software capable of providing robust and stable control laws that guide the 

navigation of the robot. This step replaces the decision making and input provided by an 
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operator, such as with teleoperated control. The decision making process overall produces the 

desired response based upon the mission objective of the autonomous vehicle. 

Action is the final step in the paradigm. At this phase, all of the sensed data have been 

processed and analyzed, and the autonomous vehicle commands its own inputs. As with all 

unmanned vehicles, input commands are delivered to the actuators that allow the vehicle to 

produce motion: engine fuel valves, amplified electric motors, brakes, and many others. 

Autonomous vehicles generate their own decisions at the planning level. These govern how to 

drive the vehicle actuators, which cause the platform to move. The sense-plan-act sequence 

continues on repeatedly, allowing the vehicle to self-regulate. 

This paradigm and its steps described can be applied to all autonomous vehicles, and in 

fact all autonomous robots. However, it is specifically used in this dissertation for the design and 

application of autonomous ground vehicles (AGVs), although other types of vehicles may 

benefit from the topic proposed. 

There are many shapes and sizes of AGVs. Different methods of propulsion for AGVs 

have been explored by a number of researchers. There are skid-steered and differential drive 

vehicles which translate and turn by means of two sets of independent wheels or tracks on either 

side of the vehicle platform. There are also car-like vehicles, which move by rotating a set of 

wheels, and turn by deflecting the relative angle between the wheels and the vehicle chassis. 

Many combinations of propulsion and turning exist in car-like vehicles: front, rear, and all-wheel 

drive, for example, are propulsion methods commonly used among them. 

There are several unique problems facing AGV engineers that are not of concern for other 

types of unmanned vehicles. The machine environment poses the greatest problem for a 

successful AGV. Unlike air and water unmanned vehicles, which can operate in a vast 
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uncluttered space, AGVs must often operate within confined spaces, among static and dynamic 

obstacles, and on different qualities of terrain. Avoiding collisions with obstacles and refraining 

from becoming trapped is a hard challenge to overcome. The vehicle must be able to quickly and 

accurately realize its environment, so designers must incorporate robust sensors capable of 

resolving the complexity of the surroundings. The vehicle must also have a high degree of 

mobility with the ability to respond quickly to avoid potential collisions. Finally, the robot must 

be equipped with enough computational power to be able to quickly process the large amounts of 

sensor data, and then control its response safely. 

Focus 

The method by which a ground robot can plan and control its own motion is the subject of 

this research. AGV motion planning and control are difficult problems for many reasons. First, 

they require the analysis of multidimensional data from multiple sensors. This means that control 

algorithms must be able to handle a relatively high throughput of data, and be fast enough (on the 

machines that perform them) to maintain vehicle stability and performance. Second, the data 

must be processed with consideration for any uncertainties in sensing and vehicle response. 

As aforementioned, uncertainty is always a concern when machines are operating in the 

real world. These uncertainties can be attributed to several sources, some examples include 

sensor limitations, noise and the inherent unpredictability of operating environments. Uncertainty 

in vehicle response is attributable to the fact that machines can only respond to their inputs with 

a limited degree of repeatability. External disturbances and wear are examples of variation 

sources that affect how a vehicle will respond to a given input. By minding these influences 

during the data processing and planning phase, an AGV is far more likely to respond correctly in 

its situation. 
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Another problem to motion planning and control is that there must be consideration for the 

motion constraints of any actuators involved or the vehicle platform itself. This is especially an 

important issue for car-like vehicles because they are subject to a nonholonomic constraint. This 

means that although a vehicle driving on a surface may have three degrees of freedom, 

(translation in two dimensions and rotation in one) it can only translate in the direction it is 

immediately facing. Consequently, the equations of motion describing the vehicle dynamics are 

non-integrable, which makes the problem much harder to solve. This also means that car-like 

vehicles are under actuated. In other words, the number of control inputs to the system is less 

than the number of degrees of freedom in the system’s configuration space. This is illustrated by 

the fact that a car-like vehicle can only move by input of a steering wheel and the rotation of its 

drive wheels, yet given the right control sequence, it can assume any position and orientation. 

This is the nature of the problem undertaken in this dissertation. 

Problem statement 

A formal description of the general AGV motion planning and control problem can be 

formulated as follows: 

Given:  

Sensed data describing the local environment around the vehicle, and a goal structure 

(point, line, trajectory, etc.) which the vehicle is desired to reach, or track, and also, feedback 

estimates of the full vehicle state, i.e. position, velocity, and orientation. 

Develop: 

An algorithm capable of optimizing and executing the vehicle’s motion through its local 

environment, and obtaining the goal. The algorithm must be able to maintain throughput of 

sensor data and command the vehicle actuators accordingly. 
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Motivation 

For over a decade The Center for Intelligent Machines and Robotics (CIMAR) has been 

actively pursuing research in the field of autonomous robotics and AGV technology. A key 

challenge during this endeavor has been tackling the problem of motion planning and control. 

The research of AGVs at CIMAR has primarily been conducted under the direct support of 

the Air Force Research Laboratory (AFRL) at Tyndall Air Force Base. The technology 

developed at CIMAR under this program has advanced the fields of automated surveying and 

mapping, unexploded ordinance detection, mine field clearing, and modular system architecture 

design. 

Over the years, many different groups of people at CIMAR have successfully automated 

over ten unmanned ground vehicles. The latest of theses vehicles is called the NaviGator, shown 

in Figure 1-1. It is a front-wheel steered, all-wheel drive platform. 

The NaviGator is a custom built all-terrain vehicle, with a mild steel roll bar frame. It has 

9" Currie axles, Bilstein Shocks, hydraulic steering, and front and rear disk brakes with rear 

emergency brakes. It has a Honda 150 HP transverse engine mounted longitudinally. A locked 

transaxle connected to the engine drives front and rear differentials. It has two integrated 28 volt 

alternators that generate 4800 watts of continuous electrical power. This power is delivered to 

onboard computers, actuators, and other electronics, along with a ¾ Ton air conditioning unit 

that cools an enclosure which houses most of the vehicle’s electrical equipment. The NaviGator 

is equipped with a number of sensors caged on the front of the vehicle. The sensors include a 

radar unit, cameras, and three scanning laser range detectors. All are used for environment 

sensing. The vehicle also has an integrated GPS/INS system, which is used for estimating its 

position, orientation and speed. 
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This vehicle was used by CIMAR as an entry to the DARPA Grand Challenge national 

competition. DARPA is the Defense Advanced Research Projects Agency, a small division of 

the United States Department of Defense, and in 2004 through 2005 it sponsored the Grand 

Challenge competition in an effort to rapidly advance experience and innovation in AGV 

technology. The competition was designed in a manner that would allow participating research 

groups to help accelerate national research in this field, without diverting resources from other 

ongoing government projects. 

The goal of the competition was to build and field a robotic vehicle that could traverse over 

150 miles of desert terrain without any human control. This was a technological feat that, prior to 

the 2005 competition, had never been accomplished. However, in October 2005, five teams 

entered vehicles that successfully completed the entire challenge course. 

Although team CIMAR’s NaviGator was not able to finish the competition, it did advance 

as one of 23 Finalists (out of over 200 applicants) and complete over 15 miles of the course, 

which demonstrated the tremendous effort put forth by all team members. The NaviGator is also 

considered a success because it will continue to serve as a research and development platform at 

CIMAR for years to come. 

The development of an online path planning and control algorithm for the NaviGator has 

been the driving motivational force behind this research topic. As part of the effort to enter the 

NaviGator into the 2005 DARPA Grand Challenge, a new approach to motion planning and 

control was developed. The approach is a variation on the receding horizon control strategy, 

where a sequence of open-loop commands are repeatedly optimized and delivered to the system. 

In a typical receding horizon controller, the optimal set of commands is calculated by 

minimizing a quadratic cost formula. The technique devised for the NaviGator is unique in that it 
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obtains a near optimal solution via a heuristic search. This has several advantages and 

disadvantages that will be discussed in detail in the following chapters. The fundamental 

significance is that this technique provided a well fit motion planning and control solution for the 

NaviGator. Although many other techniques and approaches exist, the research and advancement 

of this technique may benefit other implementations where it is suited. 
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Figure 1-1. Picture of the NaviGator AGV in race configuration, which was taken just before the 

DARPA Grand Challenge in October, 2006. 

 



 

21 

CHAPTER 2 
REVIEW OF THE LITURATURE 

To compare and contrast the newly devised control strategy, a review of published research 

literature has been conducted. Various researchers have explored different methodologies for the 

AGV motion planning and control problem. The majority of the methods brake down the 

problem into two individual tasks.  

In one task, sensor or a priori data are analyzed and a geometric path or a time varying 

trajectory of the robot’s motion is planned through an environment or workspace. These motion 

describing structures are often optimized for travel time, distance, or minimum collision 

potential. Sometimes combinations of parameters are optimized. The way in which the planning 

problem is formulated also varies greatly between applications. As input to the planning 

algorithms researchers use different techniques to describe the local environment. While some 

use discrete raster images or vector geometry, others use continuous mathematical functions. The 

different formulations have unique characteristics that will be described in detail in this chapter.  

The control task attempts to solve the problem of regulating the vehicle in order to execute 

a previously determined motion command. This command can be as simple as a desired position 

and orientation, or as complex as a trajectory sequence requiring specific turning maneuvers and 

speed changes. As with planning, the techniques developed for the control task are diverse. 

Many researchers have struggled with and found viable solutions for dealing with the 

nonholonomic and other constraints of AGVs. Although the methods differ greatly in 

implementation, there is as always, a tradeoff between stability, robustness, and performance.  

The review of research has been broken down into exploring the input and motion 

structures and then the planning and control algorithms themselves. Input structures represent 

sensor and other required data delivered to the planning or control algorithms. Likewise the 
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results of the planning algorithms are delivered to controllers via a motion structure. By 

understanding the different input and output structures, a greater understanding of the algorithms 

and techniques is gained. 

Planning and control input structures 

Potential Fields 

A category of input structures exist in the form of mathematically described functions and 

fields. One of the earliest types of fields explored is known as a potential field. In 1985 Khatib 

[KHA85] presented an obstacle avoidance approach for manipulators and mobile robots based on 

the “Artificial Potential Field” concept, where obstacles were represented as potential energy 

fields that generated repulsive forces, and goal configurations for the robot were represented as 

attractive gravitational fields. The resultant imaginary force acting on the robot was used to 

guide its motion. 

Since then researchers have used potential fields in countless scenarios. Barraquand et al. 

generate collision free paths for a three degree of freedom mobile robot using potential fields 

[BAR92]. Their approach to path planning consists of incrementally building a graph connecting 

the local minima of a potential function defined over the configuration space of the mobile robot. 

A search was conducted over the graph until a goal configuration was obtained. This was an 

efficient approach that did not require any pre-computation steps (as other researchers had 

suggested) to be performed over the potential field function. 

Warren addresses the issue of global path planning with potential fields [WAR89]. Here 

planning of a manipulator and mobile robot motion was done in configuration space (C-space), a 

multi-dimensional space described by a set of generalized coordinates which represent the 

position and orientation of a rigid body. In his implementation, Warren constructs an arbitrary 

trial path in the configuration space of the robot, which connects the initial configuration to the 
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goal configuration via a set of straight line segments. The entire path is then modified under the 

influence of the potential field until a minimum potential path is found. The effect of modifying 

the entire path at once greatly reduced the problem of becoming trapped in a local minimum of 

the potential field, however, a collision-free path could still not be guaranteed. 

Several limitations of potential field methods applied to AGVs were identified by Koren 

and Borenstein [KOR91]. Specifically they identified four problems that could arise when a 

mobile robot was subjected to the imaginary forces of obstacles and a goal. First, a mobile robot 

could become trapped in the local minima of a potential field; as could occur when the goal 

configuration was blocked by a U-shaped obstacle. (This phenomenon of potential field methods 

was previously identified by a number of other researchers; see Andrews et al. [AND83] and 

Tilove [TIL90].) Second, robots could often favor longer paths to travel around any closely 

spaced obstacles that they encountered, rather than simply pass untouched between them. Third, 

the robot motion could become unstable when passing nearby obstacles, and finally, oscillations 

could occur when a robot is traveling down a narrow corridor. This is because repulsive forces of 

walls close to either side of the robot caused oscillatory motion when it was subjected to a small 

disturbance. For these and other reasons, researchers continued to pursue other ways of 

formulating the planning and control problem. 

Navigation Functions 

A special kind of potential field function, known as a navigation function, was introduced 

in 1988 by Rimon and Koditschek [RIM88]. The navigation function is unique in that the only 

minima occurs at the goal configuration for the robot, no other local minima exists. This 

prevented the robot from becoming stuck in any local minima that might exist in a traditional 

potential field. The navigation function techniques however, are susceptible to other drawbacks. 

For a proposed application offered by Rimon [RIM91] the robot was required to operate in a 
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circular space inhabited only by disk shaped obstacles. This is a scenario with little practicality in 

a real-world environment, and only considered effective in a highly controlled experiment. 

Another limitation is that the navigation function can be difficult or expensive to compute. 

Other researchers have attempted to overcome these limitations. Konkimalla and LaValle 

were able to compute navigation functions for an arbitrary shaped workspace containing 

arbitrary clutter [KON99]. The navigation functions were computed numerically for 

nonholonomic systems, which they demonstrated by using their techniques to generate optimal 

motions for car-like robots in simulation. With their method, the navigation function was 

computed over a uniformly distributed quantized free configuration space. This was described by 

a set of points in the robot’s n-dimensional configuration, which excluded the space occupied by 

any obstacles. However, since the robot was not constrained to occupy only discrete points in the 

space, the navigation function was interpolated (with a novel technique) between points in order 

to allow the vehicle to maintain smooth trajectories, and also to keep the free configuration space 

continuous. This method was also unique in that it computed the navigation function iteratively 

over a propagating wave-front, which originated at the goal configuration. This was a key to 

allowing arbitrary shapes in describing the navigation function. A drawback of the methodology 

developed is that it assumed the robot was operating in a static and predetermined environment. 

Thus, the navigation function algorithm developed by Konkimalla and LaValle, was still not 

suitable for real-time application. 

One real-time strategy for using navigation functions to control a robot operating in a 

dynamic environment, was proposed by Loizou et al. in 2003 [LOI03]. Their approach was to 

develop a non-smooth navigation function, which allowed for faster computation than a smooth 

function. To further simplify computation, the obstacles in the dynamic workspace were assumed 
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to be disk shaped, as with Rimon’s application. The approach was proven to work in simulation, 

and guaranteed collision avoidance and motion convergence. However, arbitrarily shaped 

obstacles could not be accounted for. 

Velocity Fields 

Another type of field used to control an AGV is known as a velocity field. Here the 

environment of the robot is assumed to have an imaginary flow field. The direction and 

magnitude of the field at any given point describes the desired velocity of the robot. This concept 

was pioneered by a number of researchers in the early 1990’s. Li and Horowitz first published a 

paper on the subject in 1993 [LI93]. In their research they remarked that velocity fields had an 

advantage over a traditional potential, or navigation functions, in that they accounted for the 

robot’s desired motion over its complete workspace. In other methods, the path that a robot 

followed in order to reach its goal could not be predetermined without integrating the dynamics 

functions. Using velocity fields to describe the desired motion removed that ambiguity, because 

the robot’s desired speed and orientation is specified at all possible configurations. 

Li and Horowitz extended their initial work by applying the velocity field concept 

specifically to robot contour following problems [LI96]. In this research, a velocity field was 

constructed in a manner that would result in the robot tracing out a desired geometric contour. 

This was made possible because the resulting control scheme applied to the robot ensured 

convergence onto a stable limit cycle, which was equivalent to the desired contour. 

A novel methodology for calculating desired velocity fields was suggested by Keymeulen 

and Decuyper [KEY94], in which a field could be generated via fluid dynamics. In what they 

describe as a metaphorical approach, by placing an imaginary fluid source at the robot, a fluid 

sink at its destination, and constraining the boundary conditions of the workspace and obstacles, 

the streamlines of the resulting fluid flow could be used to describe the desired path of the robot. 
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They showed that this was a very powerful approach because it was not susceptible to local 

minima, and also the imaginary flow would be able to instantly adapt to any dynamic topology. 

The major drawback of the fluid dynamics approach is the very expensive computation 

necessary when recalculating the flow field upon any change in the robot’s environment. At the 

time of publication, the authors suggested that it was well suited on a parallel, analog, or optical 

computing machine. However, as computing machinery continues to advance, this powerful 

method becomes more and more applicable to real-world implementations. 

Dixon et al. were able to establish a control scheme that allowed a nonholonomic Wheeled 

Mobile Robot (WMR) to track a desired velocity field [DIX05]. This extended the work other 

researchers had done, which did not account for nonholonomic systems. The group developed an 

adaptive controller, and employed a Lyapunov-based analysis to prove global asymptotic 

tracking of the velocity field.  

Occupancy Grids 

Mobile robots are often designed to operate in environments that are unstructured and 

unknown. In these cases, the system has no a priori model or knowledge of its surroundings. 

Occupancy grid structures offer a means for a robot to map and rationalize this unknown space. 

An occupancy grid is a multidimensional tessellation (or array) of space into uniformly shaped 

cells. Each cell in the array contains a probability estimate that identifies whether the space is 

occupied or empty.  

The earliest uses of occupancy grids for mobile robot planning and control were developed 

by Alberto Elfes at Carnegie Mellon University. Elfes initially described the implementation of 

occupancy grids on mobile robots in a series of papers published in the mid 1980’s. Initially they 

were used for a sonar-based mapping and navigation system [ELF86]. Here the general issues 

pertaining to occupancy grids, such as spatial resolution and sensor uncertainties were described 
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conceptually. Several years later, the formalized mathematics and problem structures were 

presented [ELF89]. In this research, derived estimates of the cells were obtained by interpreting 

range readings using probabilistic sensor models. A Bayesian estimation procedure was 

employed to accurately calculate evolving grid cell states as sensor readings repeated in time. 

Borenstein and Koren presented an approach that combined the concepts of occupancy 

grids and potential fields [BOR89]. In their method known as the Virtual Force Field, each 

occupied cell in the grid applied an imaginary repulsive for to the robot. The magnitude of the 

force was proportional to the probability that the cell is truly occupied by an obstacle. This 

method yielded promising results, in its robustness to sensor uncertainty, however it still was 

susceptible to the drawbacks of potential fields described in the previous section. 

A classification of occupancy grids, described by Elfes as inference grids (where cells 

contain an estimate of multiple possible states) was employed by Touchton et al. at CIMAR 

[TOU06]. In their implementation, a type of structure named traversibiliy grid stores an estimate 

of the quality of terrain contained in the robot’s local environment. Here each cell expresses the 

degree to which a robot would be capable of successfully passing through the contained space. 

This level of classification was felt necessary in order to accommodate AGV navigation off-road, 

where space can rarely be considered only occupied or empty. 

Geometric Models 

In some of the earliest path planning research, the robot’s environment and workspace 

were represented with geometric primitives such as lines, polygons and circles. These structures 

were used because they required only a minimal amount of computational memory (a resource 

more limited at the time than today). 

Research conducted by Lozano-Perez and Wesley [LOZ79], involved the planning of a 

polyhedral object moving among other known polyhedral objects. In this original work, a graph 
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known as a visibility graph was formulated to find free paths for the moving object. The graph 

was constructed by connecting straight line segments between the vertices of the polyhedrons. It 

was called a visibility graph, because connected vertices could “see” each other unobstructed 

from the polyhedral objects. 

A different approach to planning among polygonal obstacles was presented by Takahashi 

and Schilling [TAK89]. In their method, the free space of the robot’s environment was 

represented with a generalized Voronoi diagram, which is the locus of points equidistant from 

two of more obstacle boundaries including the workspace boundary. For a polygonal workspace 

inhabited by polygonal objects, the diagram consists of only linear and parabolic line segments. 

The Voronoi diagram method made for more efficient planning, in that it consists of fewer 

vertices than a visibility graph, and also has the advantage of keeping the motion plan further 

away from obstacles. However, the method in general produces larger travel distances, which 

can reduce performance. 

A method for maintaining minimum distance optimality, and increasing computation 

efficiency was proposed by Rohnert [ROH87]. In this method, a structure called a tangent graph 

was constructed, where common tangent lines connect convex polygons in the robot’s 

workspace. It is more efficient because it contains fewer vertices than a visibility graph. A means 

of computing the tangent graph was suggested by Liu and Arimoto [LIU94]. The research group 

proposed an algorithm called the moving-line algorithm, which efficiently computed the graphs 

by decomposing the construction task into two sub-problems: detecting common tangents, and 

intersection checking among the tangents and obstacles. Their algorithm performance was 

demonstrated with a number of simulated experiments and the results were presented. 
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Motion Command Structures 

The simplest input command structure to regulate a mobile robot’s motion is a position and 

orientation set-point, in which the robot is desired to maintain a fixed and specified pose. 

Another commonly used motion structure represents the path geometry of the mobile robot 

together with an associated speed profile. Complete time varying trajectories are also common in 

practice. In this case, the vehicle’s complete position and orientation is denoted as a function of 

time. 

A broad overview of the different motion commands has been detailed by De Luca et al. 

[DEL98] in a chapter of the book: Robot Motion Planning and Control, edited by Jean-Paul 

Laumond. In their discussion they point out that these three motion structures can sometimes be 

cast as a higher level problem or sub-problem of one another. For example, some research has 

suggested that the path regulation problem is a subset of the higher level trajectory tracking 

problem. 

In their discussion, they analyze the controllability of a car-like robot attempting these 

three tasks. Their analysis employs a useful tool known as the Lie Algebra Rank Condition (see 

[ISI95]), which allows the controllability of a drift-less nonlinear system to be tested. Along with 

this test they exemplify that set-point stabilization of a car-like robot cannot be achieved via a 

smooth time-invariant feedback control law. A result established on the basis of Brockett’s 

theorem [BRO83], which implies that a necessary condition for smooth stabilization of a system 

is that the number of inputs equals the number of states. Since this is not the case, such condition 

is violated. 

Despite the varying complexities and difficulties of all three control tasks, feedback control 

solutions have been identified for them. De Luca and group, present a number of the techniques, 
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and the associated mathematics for them. Simulated results are also presented in their overview. 

Some of the strategies are presented later in this chapter. 

Planning Strategies and Algorithms 

As previously stated, AGV motion planning and control is often divided into a planning 

task, which generates a motion command for the robot, and a control task, which regulates the 

vehicle onto the predetermined motion structure. A vast number of methods have been developed 

for the planning task. They are described here in detail. 

Deterministic Geometric Planners 

Early research in nonholonomic path planning considered only simple cases where 

environmental constraints and obstacle avoidance were not part of the problem. Pioneering work 

was done by Dubins during the late 1950’s. He proved that optimal paths connecting a car-like 

vehicle from an initial position and orientation, to a final configuration state, were made up of 

straight line segments and circular arcs, with radius equivalent to that of the vehicle’s minimum 

turning radius [DUB57]. This theory was developed for a vehicle traveling only with forward 

motion. Reeds and Shepp extended the work of Dubins to include motion for a vehicle traveling 

both forwards and backwards [REE91].  

There are several drawbacks to these planning methods. The most notable is that they do 

not consider the presence of any obstacles in the workspace of the vehicle. Also, the curves are 

made up of segments with discontinuous curvature at the connections between them. This means 

that for a car-like robot to follow the curves exactly, it must come to a stop at the segment 

junctions in order to change its steering angle. 
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Search and Heuristic Methods 

A group of motion planners rely on heuristic or graph searching techniques. With these 

methods, a plan is constructed that is based on the result of searching through discrete graph 

representations of possible robot configurations in its obstacle cluttered environment. 

A common search technique for these applications is called A* (A-star), and it was 

originally developed by Hart, Nilsson, and Raphael [HAR68]. Their research presented the 

formal basis for showing that the search method is both admissible and computationally optimal. 

Since its inception, A* has been used in a wide variety of mobile robot planning algorithms. 

Kuan et al. use an A* search to find a path to a goal configuration for a mobile robot 

navigating among convex polygon shaped obstacles [KUA85]. Their method locates critical 

“channels” and “passage regions” within the free space, which are then decomposed into non-

overlapping geometric-shaped primitives. From this representation, the path planning algorithm 

then finds trajectories inside the channels and passage regions. 

Another implementation searches through a multi-resolution grid to find a path. Presented 

by Kambhampati and Davis [KAM86], a method using a quad-tree hierarchical representation of 

the workspace is exploited to gain a computational savings in the search. Their technique was 

more efficient because it did not consider the excess detail in parts of the space that did not 

substantially affect the planning operation. 

A minimum time planning approach for a robot was given by Meystel et al. [MEY86]. In 

this method, the robot’s acceleration, deceleration and turning capabilities were taken into 

consideration during planning in order to minimize the overall time-to-goal for the calculated 

trajectory. Their algorithm employed the A* search to optimize the plan. 

Thorpe and Matthies offer a path relaxation technique for mobile robot planning [THO85]. 

Here a grid search is performed to calculate and initial trajectory to the goal. Once an initial 
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solution is established the path is “relaxed” by allowing the nodes that describe the trajectory to 

follow the negative gradient of the cost grid. This is done to determine a more optimal final 

solution, and helps plan a path that is not too close to any obstacles. 

Vector Methods 

In an effort to increase computational efficiency, reduce algorithm complexity, and to 

correct some of the problems resulting from field-based control methods, a number of 

researchers have devised methods for planning using vector geometry. 

Borenstein and Koren pioneered the Vector Field Histogram method [BOR91]. In this 

method, a polar histogram of obstacle densities was constructed around a window centered at the 

robot’s location. The density values in the histogram were calculated by analyzing how objects 

in a grid interacted with a set of vectors originating at the robot. Once the histogram was 

calculated a desired heading vector was determined based on a target heading and the valleys in 

the histogram. Results showed successful local planning, but a possibility for the robot to 

become “trapped” in dead-end situations existed. 

A modification to the previous method was developed by An and Wang [AN04]. Their 

method known as Vector Polar Histogram differs slightly form Vector Field Histogram in that 

the histogram is calculated directly from a polar sensor (rather than a grid), and it is transformed 

into a binary histogram based on a dynamically changing threshold. This threshold value is 

calculated in real-time and is based on the robot’s velocity. Overall, the modifications were 

claimed to offer simpler and equally effective local obstacle avoidance. 

Vector based planning methods have also been used to provide a simple means for 

avoiding moving obstacles. A technique involving relative velocity vectors was offered by 

Fiorini and Shiller [FIO93]. A collision free path was planned for a circular object moving 

among circular obstacles with constant linear motions. To plan the path a graph was constructed 
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with straight line segments, which was a generalization of the visibility graph to the case of 

moving obstacles. 

Jing and Wang advance a vector technique for avoiding obstacles in an uncertain 

environment, specifically for a mobile robot [JIN05]. The dynamic motion planning problem was 

transformed into an optimization problem in the robot’s acceleration space. As with Fiorini and 

Shiller’s method, relative velocity vectors between the robot and encountered obstacles are used 

in order to define the robot’s desired behavior. With the behavior determined, a feedback control 

law was established, and stability in each planning period was proven. 

Probabilistic Planning 

Probabilistic methods for path planning have become increasingly popular for mobile robot 

navigation. These techniques are often designed to guide the robot through free space in a 

manner that reduces the risk of collisions or other undesired behaviors. Usually, an iterative 

analysis of the local environment is conducted as a preliminary step to probabilistic planning. 

Kavraki et al. developed an algorithm to calculate probabilistic roadmaps of a robot’s free 

configuration space [KAV96]. In what they characterize as the learning phase of the planning 

method, the roadmaps are constructed by repeatedly generating randomized free configurations 

of the robot and then connecting these states with a simple motion planner. This process 

continues until enough configuration nodes exist to successfully plan from a starting 

configuration to a goal. The number of free configuration nodes generated depends on the 

intricacy of the configuration space. 

A probabilistic method for obstacle avoidance amongst moving obstacles with motion 

uncertainty is proposed by Miura et al. [MIU99]. In this research, moving obstacles within the 

robots environment are modeled with motion uncertainty, i.e. the predicted future location of the 

object is uncertain. The obstacles are also modeled for sensing uncertainty, in which the sensed 
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instantaneous state of the obstacle is unsure. Based on these probabilistic models, their method 

repeatedly selects the best motion plan in a decision-theoretic manner, that is, by a one-step look-

ahead search in a probabilistic search tree. 

Cell decomposition is a path planning method that involves partitioning the free 

configuration space of the robot into disjoint sets, called cells. Methods to generate the cell sets 

are often costly due to the complexity of determining whether a cell is entirely contained in the 

free configuration space or not. Lingelbach presents a probabilistic method to cell decomposition 

where cells are probabilistically sampled to determine if they are free [LIN04]. This method 

offered an improvement in the efficiency of cell decomposition for high dimensional 

configuration spaces. 

Thrun et al. present a broad explanation of probabilistic path planning algorithms for 

robotics [THR05]. Their overview describes a technique known as value iteration, as a solution 

to a Markov decision process. In this process the state of the robot’s environment is assumed to 

be known, but an allowance for stochastic action effects is maintained. In other words, the 

robot’s response to a given input may be uncertain. The value iteration method in effect produces 

a probabilistic navigation function, which is used in planning to guide the robot’s motion.  

Control Strategies and Algorithms 

The control task for an AGV involves the regulation of the vehicle onto a predetermined 

motion command. Here the goal is to minimize any error between the vehicle’s state and a 

desired state. This is done by commanding the vehicle plant inputs in a deliberate manner, which 

is often specified by a mathematically defined function, or procedure. Many control methods 

have been developed for this purpose and some are described here in depth.  
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Kinematics Methods 

Research in path tracking control of an AGV has demonstrated successful implementations 

of kinematic control methodologies, where system equations of the vehicle’s motion about a 

geometric path are used to develop a controller. An early kinematic technique known as pure 

pursuit was originally developed at Carnegie Mellon University. The solution gained much 

popularity due to its simplicity and performance. 

Coulter, a researcher at Carnegie Mellon, describes an implementation of the pure pursuit 

path tracking algorithm and some of the stability and performance considerations for it [COU92]. 

Essentially the method is used to calculate the arc (or curvature) necessary to get the vehicle 

back on the desired path. This is done by choosing a look-ahead distance, and calculating the 

goal position on the path at that distance. This leads to the analogy that the vehicle is “pursuing” 

a moving point, which is always at some distance ahead of itself. 

A more in depth analysis of the algorithm was presented by Ollero and Heredia [OLL95]. 

In their research they presented mathematically formulated stability criteria for a vehicle tracking 

a straight line and circular arcs. Their work showed that the stability of the closed-loop system 

was dependant upon the look-ahead distance parameter, and any time delays in feedback data. 

They also presented simulated results; for varying time delays and tuning on the look-ahead 

parameter. 

Vector pursuit is another kinematic technique devised for path tracking. This method was 

developed by Wit [WIT00] in his doctoral research at CIMAR, and it involves determining the 

desired motion of the vehicle based on the theory of screws (introduced by Sir Robert S. Ball in 

1900 [BAL00]). In an effort to correct some of the drawbacks of pure pursuit, Wit includes the 

vehicle’s desired orientation at the look-ahead point in the geometric analysis. Vector pursuit 

allowed for the consideration of both heading and distance errors without any mixed units (which 
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other methods had) in the mathematical foundation. This resulted in a geometrically meaningful 

control scheme. 

Linear Control Systems 

Linear control system theory contains a rich set of analysis and synthesis techniques for 

designing and implementing controllers. Many of these methods have been developed, tested, 

and proven for several decades, and are still commonly used in practice today. This is because 

the methods are often simple and robust in implementation, and because of these reasons, 

researchers have applied the theories to the control of AGVs. 

Nelson and Cox, a team of researchers at AT&T Bell Laboratories, demonstrated the use of 

a simple proportional control scheme on a mobile robot [NEL88]. The controller was used to 

guide the vehicle along a set of predetermined path segments. There experimental results showed 

several problems with the control methodology. For example, the vehicle stability was affected 

directly by its speed, the faster the motion the less stable the path tracking. Also, transitions 

between path segments of varying curvature led to initial overshoots, which could not be 

corrected by control tuning. 

In a more recent effort, Choi presents a proportional derivative controller for an 

autonomous highway vehicle [CHO00]. Here the parameters are designed to be adaptive, in an 

attempt to correct persistent disturbances from wheel misalignments, unbalanced tire pressure, 

side wind, etc. The compensator developed provided closed-loop control for the vehicles lateral 

motion in highway lane following, and was demonstrated in experiment to successfully stabilize 

the vehicle, and reject disturbances. 

A modern robust linear control technique known as H∞ (H infinity) control, was used by 

Kim et al. to steer an AGV [KIM01]. This technique was used to synthesize a state-space 
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controller, which was robust to the quantifiable uncertainty of: system parameters, noise, input 

signals, etc. In this group’s research, the controller developed was tested on a car vehicle 

tracking a straight road. Initial results showed effective performance in tracking the road, and 

merited additional experimentation on curved roads. 

Nonlinear Control 

Researchers in the field of mobile robot control have widely developed nonlinear solutions 

to the problem. Nonlinear controllers are designed and analyzed with a number of mathematical 

tools mostly based on the foundation of Lyapunov stability criteria, which will be discussed in 

chapter three of this document. These methods are used, because the mobile robot control 

problem is highly nonlinear in nature, and it is not well suited for linearization or other linear 

control techniques. 

Significant results were obtained by Samson during the early 1990’s. In this work a smooth 

time-varying feedback controller was developed to regulate a wheeled mobile robot to an 

arbitrary set-point [SAM90]. This was a powerful result, because it showed that stable set-point 

feedback regulation, albeit time-varying, was practical despite the implications of Brockett’s 

condition [BRO83], which proved time-invariant feedback for mobile robot set-point regulation 

is not possible. 

Jiang et al. presented another time-varying feedback result for globally stable tracking of a 

mobile robot pursuing a reference trajectory that is a function of time [JIA97]. In this work, the 

group presented simulated results, which validated their theoretical results. The robot kinetics 

equations were included in the design via an integrator backstepping technique. 

Dixon has developed several unified regulation and tracking controllers, which guarantee 

stability of a wheeled mobile robot [DIX00]. The differentiable kinematic control laws 
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developed utilize a damped dynamic oscillator in which the frequency of oscillation is tunable. 

These results led to continued successful work with simulated and experimental results. 

Model Predictive Control 

Model predictive control is an advanced technique often used in industry to solve 

optimization problems under certain constraints. A specific form of model predictive control is 

known as receding horizon control. In this methodology, the control problem is optimized over a 

finite period of time, and the resulting control signal is applied to the system. This process is 

continually repeated. In each optimization, the first control signal in the optimized control profile 

is delivered to the plant. The remaining signals are discarded. 

Recently this technique has been applied to mobile robot control. Gu et al. presented a 

result where a wheeled mobile robot was regulated to an arbitrary set-point using a receding 

horizon controller [GU05]. Their results showed that stability for the robot could be achieved 

and simulated data were given. Computation time was the main drawback of their result. They 

cited that real-time implementation of the controller was not practical given their method of 

optimization, and suggested further work was necessary in order to find ways of improving the 

computation efficiency. Binary decision trees and artificial neural networks were two methods 

suggested for incorporation, by the group. 

The following chapter offers the theoretical foundation and analysis for a new and novel 

methodology used to solve the computational problems faced in the real-time implementation of 

a receding horizon controller, particularly on an AGV. 
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CHAPTER 3 
THEORETICAL APPROACH 

Introduction 

Motion planning and control for an AGV are both challenging tasks. A novel methodology 

for unifying these into one task, while maintaining online computability, is the main contribution 

of this dissertation. A newly devised heuristically optimized receding horizon controller (HRHC) 

is proposed for the combined task. The purpose of this chapter is to explain and formalize the 

mathematical foundation of the approach. Another contribution of this dissertation is a novel 

extension to the standard receding horizon control scheme. The extension, called Dual-frequency 

receding horizon control (DFRHC) is also presented in this chapter. 

Receding horizon control (RHC), or more generally, model predictive control (MPC) is an 

advanced technique used to solve complex constrained control problems online. A broad 

overview of the technique is offered in [MAY00]. It employs methodology from optimal control 

theory to determine the best control action for a given state. In receding horizon control, a 

sequence of open-loop plant input commands are optimized over a finite time horizon. The first 

command in the sequence is then used as the control action for the plant and the optimization 

process repeats to determine a new control. Feedback and disturbance rejection are incorporated 

into the technique by updating state estimates at a discrete time interval and executing the 

optimization procedure over the newly shifted time horizon. Figure 3, presents a visualization of 

the general RHC process, where an optimal input control sequence produces a minimal cost state 

trajectory in the state-space, when predicted though the system dynamics function of equation 

(3.1). 

A key concept of RHC is that the state trajectory being tuned is generated by predicting the 

system’s future states through a dynamical model. The procedure determines a set of open-loop 
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commands which, when extrapolated through this model, yield a minimum cost path over the 

finite time horizon. 

Remark 1: The use of RHC for an AGV inherently unifies the planning and control tasks, 

because the vehicle’s future motion is continually being optimized as a sub-problem of the 

overall control task. This continuous online optimization is equivalent to a separate planning 

process. 

The optimal control problem in receding horizon control is usually posed as the 

minimization of a quadratic cost function over the time interval[ , ]t t T+ . For a time-invariant 

nonlinear system, the optimization is subject to the dynamics, which are given is their discrete 

form as, 

 ( ) ( ) ( )( )1 ,x t f x t u t+ = , (3.1) 

where ( ) ( ),n mx t u t∈ ∈R R denote the unconstrained state and control input vectors respectively. 

The dynamics function ( ) : n m nf ⋅ × →R R R , is assumed to be continuous at the origin 

with ( ) 00,0 =f . The cost / value function for the optimization problem is typically given as 

 ( ) ( ) ( ) ( ) ( ) ( )( , )
t T

T T

t
V x t u t x Qx u Ru

τ

τ τ τ τ
+

=

= +∑ , (3.2) 

here bothQ  and R  are positive-definite symmetric constant weighting / gain matrices. The 

optimal control task is to choose a sequence of future controls, which minimize the cost function 

over the projected time interval. The optimal input sequence is given by: 

 { }1 2 1ˆ ˆ ˆ ˆ, , , ,t t t t t Tu u u uπ + + + −= . (3.3) 
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This optimal control sequence thus has a corresponding sequence of future states, which is 

governed by (3.1). The instantaneous control input to the system in RHC is then selected as the 

first control vector in the sequence tπ : 

 ( ) ˆtu t u= . (3.4) 

Repeating this process thus yields a closed-loop control system, because upon every time 

step the current state information is updated and a new optimal control is computed. Thus by 

repeatedly updating the state information, a feedback mechanism is inherently introduced into 

the control scheme. 

By substitution of the optimal control and predicted state sequence into equation (3.2), the 

minimum cost for the given state x is established. Typically RHC is used to control constrained 

nonlinear systems where: ( ) ( ),n mx t u t∈ ⊂ ∈ ⊂X R U R  are the constrained input and state-

space which are convex subsets of the unconstrained spaces, which include the origin at their 

interior. As a required “ingredient” for stability, a terminal state constraint ( )x t T+ ∈Ω  is also 

included in the problem, where nΩ⊂ ⊂X is a convex subset of the state-space which also 

includes the origin at its interior. (The exact conditions which must be met for RHC stability are 

differed to later in the chapter.) With these constraints, the optimal cost function for any given 

state can be expressed as the optimization problem solution: 
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Notice that equation (3.5) is explicitly independent of time. This is because the underlying 

optimization of the system is time-invariant. In other words the optimization problem will always 

yield the same result for any specific state regardless of time. 

Generally the minimal cost and its associated optimal control sequence are not known 

ahead of time and therefore a mechanism to determine these values is required to implement a 

receding horizon controller. Most commonly, the optimization problem in receding horizon 

control is solved with Quadratic Programming techniques (due to the classically quadratic nature 

of the cost function) or Mixed Integer Quadratic Programming (MIQP) [BEM00] (for finite and 

discrete systems). These are computationally expensive, complicated, and time consuming 

processes, which limit the use of receding horizon control for electro-mechanical systems. This 

limitation is primarily due to the time critical nature of the required control, i.e., most electro-

mechanical system have relatively short time constants and time-to-double instability criteria. 

(Time-to-double is a widely used metric used to describe the amount of time it takes for an 

unstable system to double in amplitude. The shorter the time-to-double metric is, the more 

unstable the system is, and therefore it is more difficult to control.) However, RHC has seen the 

most of its success in the chemical process industry where these types of system parameters can 

be several orders of magnitude larger than their electro-mechanical counterparts, and therefore a 

slower computation of the optimal control is acceptable. 

Motivated by the need to solve for these complex optimal trajectories online for electro-

mechanical systems, the proposed heuristic receding horizon control (HRHC) uses a finite graph 

search known as A* (A-Star) to find the optimal control sequence, rather than a dynamic 

programming approach. A* search is a technique originally developed for Artificial Intelligence 
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applications; however the method lends itself elegantly for efficiently solving complex searches 

in state-space defined systems. 

Furthermore, since the optimization problem can become much more difficult for a non-

quadratic cost function, in which systems are more generally defined with the value function: 
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where ( ) ( )( ),L x t u t  is the general nonnegative intermediate cost function over the optimization 

interval. A* search can be applied to such a system with little impact attributable to the 

complexity of ( )L ⋅ . Other optimization methods require the function ( )L ⋅ to be in a specific form 

(primarily quadratic). 

One essential requirement of A* however, is that the state-space and input space be 

discrete and quantized. (Generally it is more important to have a quantized input space. The 

state-space may remain continuous, so long as a few simple modifications are made to the 

search. This will be discussed in more detail in the third section.) Classically, receding horizon 

control requires that the input and state-spaces are continuous in order to guarantee stability and 

optimality [MAY90] (Solutions that achieve these properties exist for both discrete and 

continuous systems. See [NIC98]). To apply A* to the RHC problem the notion of both stability 

and optimality must therefore be modified to include results that are sufficient but nevertheless 

sub-optimal. Researchers have shown that sub-optimal solutions to the classic RHC problem can 

maintain overall stability [SCO99], but the idea of stability changes slightly when considering a 

system controlled by a quantized input set [BRO00]. 

It should be noted that the consideration of quantized input control is inherently more 

robust for implementation on real-world systems for a very practical reason. The modern 
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approach for control systems incorporates the use of discrete computers and their respective 

electronic interfaces to the continuous system. The underlying control mechanisms are thus 

discrete and quantized, i.e. program variables in memory, analog to digital converters, etc. 

Therefore the inputs to the continuous systems are also discrete and quantized. Although these 

facts are more often now neglected due to the increasing resolution and speed of computing and 

interface hardware, by considering their effects in the control solution, a better defined and more 

predictable behavior can be achieved. 

The remaining portions of this chapter are broken down into sections as follows: in the 

second section, basic assumptions, notation and preliminary results are discussed. The third 

section defines the A* algorithm used by HRHC. In the fourth section, the required quantization 

and invariant set properties needed for stability criteria are given, and the formulation of the 

novel HRHC is presented in the fifth section. Dual Frequency Receding Horizon Control 

(DFRHC) is shown in 6, and finally conclusions are presented. 

Notation, Assumptions, and Preliminary Theorems 

An essential theorem for RHC is that of the suboptimal stability conditions. When met, 

these criteria provide proof that the system will maintain stability, and converge to a desired set 

point. Classically, the stability of nonlinear systems has been identified with the standard 

Lyapunov stability theorem. One fundamental requirement of this theorem is that the input 

control u of the system is a continuous function of the state x, and hence this also implies that the 

control for any particular state be unique. 

The suboptimal stability results are formulated in a manner similar to that of the standard 

Lyapunov stability theorem; however they allow for a non-unique and discontinuous control law. 

As will be shown later in the chapter this is the case that must be considered for HRHC, because 

of the finite and quantized nature of the A* search. 
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Before the suboptimal stability theorem is presented, some basic notation must first 

introduce. First, the Euclidian norm of vector x is denoted as x ∈ where the dimensionality of 

the vector x, is identified through the context. Any function ( )α ⋅  defined on the range [ )0,∞ is 

considered a class K-function if it is continuous and strictly increasing, with ( )0 0α = . Lastly, let 

n
rB denote a closed ball set of radius r in the space n , or in another form, let the 

set { }: |n n
rB x x r= ∈ ≤ . 

With these concepts defined, the suboptimal RHC stability theorem is referenced from 

[SCO99], and provides the basis of stability for the newly proposed HRHC scheme of this 

dissertation.  

Feasibility Theorem for Suboptimal RHC from [SCO99], let there exist: 

1) a value function ( ) :V ⋅ which is continuous at the origin with ( )0,0 0V = and a K-

function ( )α ⋅ , such that 

 ( )( ) ( )( ) nV x t x t xα≥ ∀ ∈  (3.7) 

2) a set 0
nX ⊆ that contains an open neighborhood of the origin and a K-function ( )γ ⋅ , 

such that every realization of the controlled system with ( ) 00x X∈ , satisfies ( ) 0x t X∈ for 

all 0t ≥ and 

 ( )( ) ( )( ) ( )( )1V x t V x t x tγ+ − ≤ −  (3.8) 

3) a constant 0r > and a K-function ( )σ ⋅ , such that every realization of the controlled 

system with ( ) n
rx t B∈ satisfies 
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 ( )( )t x tπ σ≤ . (3.9) 

Then the controlled system is asymptotically stable in 0
nX ⊆ . 

This theorem simply identifies that: if the value function can be lower bounded by a class 

K-function, and if the change in the value function can be upper bounded by another K-function, 

and the norm of the suboptimal control sequence tπ can be upper bound by a K-function, then 

the controlled system will be asymptotically stable in a the local region 0X . The reader is 

referred to text [SCO99] for the complete detailed proof of the theorem. 

A* Algorithm and Admissibility 

As stated in section I, the process of determining the open loop input sequence (3.3) 

requires an optimization method in the receding horizon control scheme. One way to accomplish 

this step is to conduct a search for the optimal sequence over a finite input and state-space graph. 

One of the most readily used techniques to do this is known as the A* (A-Star) search. The bulk 

of information provided in this section is given in [NIL71] and [NIL98]. This gives a synopsis of 

the provided formulations and is used only as an introduction of the required knowledge needed 

to detail HRHC. For a more complete discussion refer to [HAR68]. 

A* is an admissible graph search algorithm. The admissibility of the algorithm guarantees 

that it will always terminate with a minimum cost optimal solution sequence if one exists. This is 

a required property for implementation of receding horizon control since the optimality of a 

solution is closely related to the stability of the control. The A* algorithm is a heuristically 

guided search. The term heuristic means serving to aid to discover, and is derived from the Greek 

verb heuriskein, meaning “to find”. The heuristic information, as will be seen, depends on some 

educated or special knowledge about the type of problem being represented by the graph. This 
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information is used to guide the search in order to increase its efficiency and timeliness. The 

heuristic information is represented by a heuristic function in the search algorithm. It will be 

shown that if this function adheres to some simple constraints the search can be made to be both 

efficient and admissible. 

 Before the A* algorithm is discussed, it is first necessary define the general graph-

searching process. A graph consists of a set of nodes, where each node represents a particular 

configuration in a corresponding state-space. A node in the graph can be connected to another 

node in the graph by an arc. The arc defines a way to get from one node to the other and it can be 

correlated to a unique transition in the represented state-space. 

A graph search is a process that determines a sequence of state transitions, represented by 

arcs in the graph, that allow for the transversal from one specific node to another specific node or 

group of nodes. Every search therefore has a start node, which is associated with the initial state 

configuration, and a set of goal nodes or single goal node, which represent a final desired 

configuration. 

The successors for any node in the search, i.e. the set adjacent nodes connected to the 

original node by a single arc, are calculated via operations applicable to the corresponding state 

configuration describe by that node. For example, for a nonlinear system defined by (3.1), any 

state configuration tx , represented by node
txn , can by succeeded by a set of states 1tX + , which are 

the result of applying the set of possible input commands 
txU over a finite period of time. A way 

to show this process is as a mapping from the given state to the set of future possible states, as 

seen here: 

 
( ),

1
t

x

f x u
t tu Ux X +∈⎯⎯⎯→ . (3.10) 
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This operation is called the expansion of a node and is denoted by the operator ( )nΓ . The 

expansion of a node therefore produces a set of successor nodes, which can be shown with: 

 ( )1i iN n+ = Γ . (3.11) 

As a direct requirement of the expansion process, when applying any graph search to a 

linear or non-linear state-space control system, the input space (u) must be finite and discrete 

(thereby implying a quantize-input system). Without a discrete input-space, the expansion of a 

single node would generate an infinite number of successor nodes. Clearly this would result in an 

undefined search process. By using a naturally or artificially quantized input space, the graph 

search remains finite and computable. This quantization has a profound impact on the overall 

control stability, the complete discussion of which is deferred to later in the chapter. 

During the expansion process, pointers are set up from each successor node to its parent. 

These pointers are used to trace a route back to the start node once a goal node has been found. 

The functions which define the relationship of a node with its represented state and the pointer to 

its parent are given here: 

 ( ) ( )( )1, ,i in node x t u t n −=  (3.12) 

 
( ) ( )
( ) ( )
( ) 1

i

i

i i

xnode n x t

unode n u t

pnode n n −

=

=

=

 (3.13) 

where equation (3.12) is the node construction function, which requires a state, input and 

predecessor node, and the equations in (3.13), provide a means to access a given node’s state, 

control input, and parent node. 
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The graph structure automatically created as a result of the expansion process is known as 

a tree. A tree is a graph in which each node has a unique parent, except for an origin node which 

has no parent, and is called the root node. In this case the root node is clearly the start node. 

Trees also have the unique property in that every path to a node in the graph is unique. 

Therefore, it can be guaranteed that each node created in the tree has never been generated 

before nor will it be generated again. 

As the expansion process continues, each of the newly generated successors are checked to 

see if any of their represented state configurations meet the required goal state criteria. If such a 

goal node is found the arcs connecting the solution nodes are traced back to the start using the 

pointers, and the corresponding solution sequence of state operators, which produce the path to 

the goal, is generated and returned as the result. 

This description is of a general graph search process. However, for the description to be 

complete, another process which clearly defines the order in which nodes are expanded must be 

established. One way to define this process is simply to expand nodes in the order in which they 

were generated; this is known as a breadth-first search. Another way is to expand the nodes 

which were most recently generated, a process called depth-first search. Both breadth-first and 

depth-first are known as blind-search procedures, because they do not use any information which 

is relevant to the problem being represented in the search graph. 

A* search uses heuristic information to provide a more informed way to search through the 

graph and its represented state-space. The heuristic information is given in the form of a 

mathematical cost estimation function, which is part of an evaluation function that is used to 

order the node expansion process. This evaluation function then serves the purpose of ranking 

candidate nodes by which one is most likely to be on the best path to the goal. 
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The A* algorithm defines the evaluation function ( )f̂ n as an estimate of the cost to reach 

the goal along a path which is constrained to pass through node n. This evaluation function 

therefore estimates the cost of a minimal cost path, as the sum of the estimated cost from the start 

node s to n, and the estimated minimal cost from the node n to any goal node. The candidate 

node which has the minimum value of ( )f̂ ⋅ is thus the node with the best chance of being on the 

minimal cost path to the goal, and it should be expanded next in the search. 

Assuming the function ( ),i jk n n provides the true minimum cost from node in  to node jn , 

the following cost function is defined: 

 ( ) ( )min ,
g G

h n k n g
∈

= . (3.14) 

Here G is a set of goal nodes. Note that this function is undefined for any node from which 

the set of goal nodes is unreachable. The function 

 ( ) ( ),g n k s n= , (3.15) 

provides the minimum cost from the unique start node to the node n, and is only defined for any 

node in which a path from the start node exists. The sum of equations (3.14) and (3.15) is 

defined as 

 ( ) ( ) ( )f n g n h n= + , (3.16) 

and is the true minimum cost from the start node to the goal, on a path constrained to pass 

through the node n. 

Since A* requires the evaluation function to be an estimate of (3.16), the estimate is 

defined as 
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 ( ) ( ) ( )ˆ ˆˆf n g n h n= + , (3.17) 

where ( )ĝ ⋅ is an estimate of ( )g ⋅ and ( )ĥ ⋅ is an estimate of ( )h ⋅ . Clearly ( )ĝ n can be calculated by 

simply summing the accumulated costs of single arc transitions from the start node through any 

successor nodes and ultimately to the node n. The estimate ( )ĥ ⋅ however is much more difficult 

to calculate since no future knowledge of the minimum cost path to the goal exists, because such 

a path is constructed only when the search is finished. At a midpoint in the search, heuristic 

information or knowledge about the problem being represented must be used. Hence ( )ĥ ⋅ is 

called the heuristic function. This heuristic function must meet certain criteria in order to 

maintain admissibility of the A* algorithm. 

The A* algorithm is defined as an extension to the general graph search process, which 

uses the evaluation function given in (3.17) to select the order in which nodes are expanded. The 

algorithm is broken down into a sequence of steps shown in Table. Essentially, the search is 

conducted via the management of two sets, one set O, is called the open set, and the other set C, 

is known as the closed set. The open set maintains a list of candidate nodes which have not been 

checked to see if they exist in the goal set. The closed set contains all of the previously expanded 

nodes, which are not in the goal set, however must still be managed in order to allow a solution 

sequence to be traced back to the start node from the goal node. 

Initially the algorithm is given the start node s, and the goal set G. The search continues the 

process of finding a minimum cost estimate node on the open set, and expanding the nodes until 

either a solution node is found or the open set runs out of candidates. The expansion operator 

( )Γ ⋅  is responsible for generating successor nodes (if they exist) and setting up pointers to the 
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parent node. If a goal node is found, it is returned as the solution and it can be traced back to the 

start node through the established pointers. 

Up until this point in the chapter, it has only been stated that the evaluation/cost 

function, ( )f̂ n , must meet certain conditions in order for the A* search to find an admissible 

solution sequence to the goal set. This fact is based off of two keystone theorems proved by the 

creators of the A* algorithm [HAR68]. They are cited here only for reference. The reader is 

referred to the previous source for detailed proofs.  

A* Lemma: If ( ) ( )ĥ n h n≤ for all n, then at any time before A* terminates and for any 

optimal path P from node s to a goal, there exists an open node 'n on P with ( ) ( )ˆ 'f n f s≤  

This lemma establishes that if the heuristic function cost estimate is less than the true cost 

to the goal for all nodes, then some node 'n , created during the A* search process, exists on the 

set of open nodes, and its corresponding path cost estimate ( )ˆ 'f n is less than the true minimum 

cost path to the goal from the start node s. 

A* Theorem: If ( ) ( )ĥ n h n≤ for all nodes n, and if all arc costs are greater than some small 

positive numberδ , then algorithm A* is admissible. 

The initial A* lemma is used to prove the primary A* theorem which states that if a 

heuristic function is chosen that always underestimates the true cost to the goal, and if state 

transitions along arcs between nodes have some non-zero cost, then the A* algorithm will always 

terminate in an admissible solution if one exists. 

For the theoretical approach described here, A* is used as a replacement for a classical 

optimization routine, and therefore an algorithm is desired that can obtain an admissible, and 

thus near optimal, solution sequence from a start state to a goal state. In order to adhere to the A* 
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theorems, a heuristic function is chosen that always underestimates the state transition cost to the 

goal region, in order for this implementation of RHC to be correct. The meaning of this heuristic 

function and how it is selected is very important and is the basis of the Heuristic RHC 

implementation discussion in the next chapter. 

Quantization and Invariant Sets 

As aforementioned in the previous section, in order to use the A* algorithm in place of an 

input sequence optimizer, a quantized (artificially if need be) input space must be used for the 

system that is being controlled. This is because the expansion of nodes during the search must 

yield a finite set of successor nodes rather than an infinite continuum of possible future states. 

Since the expansion of a node is calculated by stimulating all possible input commands over an 

interval of time, then the number of possible commands must also be finite and hence quantized. 

This quantization will guarantee a finite set of successor states for any given configuration 

represented by a node. The quantized input set U  is a subset of the continuous real input space 

and is defined as: 

 { }1 2: , , ,m
Nu u u= ⊂…U  (3.18) 

where subscripts 1 through N denote the different levels of quantization. 

The discussion of the effects of input quantization first requires some critical definitions 

which are now introduced before the following formulations of the chapter: 

Definition 1: A set of state-space configurations is considered to be zero-measure set if it 

is made up of only singular discontinuous configurations, such that the measurable probability of 

finding the system in that state would be equal to zero. Example: in a two-dimensional state-

space, a non-null zero-measure set would consist only of points or curves in the configuration 
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space, whereas a measurable set would consist of at least one continuous area or region. 

Likewise, the three-dimensional equivalent would require some measurable volume. 

Definition 2: The terminal constraint region nΩ⊂ is a controlled-invariant set for system 

(3.1) iff x u∀ ∈Ω ∃ ∈U such that ( ) ( )1 ,x t f x u+ = ∈Ω . 

Definition 3: If 0
nXΩ⊂ ⊆ , then the set Ω  is said to be 0X attractive− iff 0x X∀ ∈ there 

exists some trajectory contained in 0X that entersΩ in a finite number of steps. In addition, if 

0x X∀ ∈  the trajectory can be chosen to be of length T (where T is the number of steps in the 

time horizon), thenΩ is said to be 0X attractive in T steps− . 

By Definition 1, it can clearly be seen that the quantized input set is indeed a zero-measure 

set in the constrained input space. The consequences of a quantized input space belonging to a 

continuous nonlinear system, such as an Autonomous Ground Vehicle, are far reaching in their 

impact on its stability and its reachable state configurations. The classic concept of stability, i.e. 

asymptotic or exponential convergence to some set-point or tracking point, is lost because the 

zero-measure nature of the control prevents the system from performing arbitrary state 

transitions. Instead, the system is restricted to a finite set of future states, which depend on the 

levels of quantization and the number of decision steps or time horizon. This restricted 

performance requires a more “practical” sense of stability, in which the system is allowed to 

converge to a broad set-region in the state-space. This notion was made clear in [DEL90] for an 

attempt to define more realistic stability properties for quantized systems. 

Also, since the input space is quantized, the determined solution will always be sub-

optimal. The reason for this is that the true optimal solution is assumed to be a sequence, which 

exists somewhere in the continuous input space. Since the input set is zero-measure, the 

probability of finding the true optimal input sequence within the quantized set is zero. In other 
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words, a quantized solution cannot include every possible input and therefore one will never 

practically be able to find the true minimum cost trajectory that exists somewhere in the 

continuous state-space. This is reflected in a comparison of the optimal state transition cost 

between the quantized input system and the continuous input system: 

 ( ) ( )min , min , .
mu u

V x u V x u
∈ ∈

≥
U

 (3.19) 

Figure shows the possible input space sequence over the time horizon, and that the optimal 

solution values will never exactly touch the possible quantized input values. As a result, the 

optimal quantized input state-space trajectory will differ from the continuous input optimal state 

trajectory. This trajectory difference will result in a larger value function cost, and thus is 

considered to be suboptimal. 

In order to insure stability of a RHC, one solution [MAY90] is to impose a terminal state 

constraint, ( ) 0x t T+ =  on the optimization problem. For a quantized input system, this would 

result in a zero-measure set of possible initial states, thus rendering this stability constraint 

unrealistic. Rather a quantized input system must incorporate a relaxed terminal state constraint 

to include an entire controlled-invariant regionΩ . This allows the optimization problem to find a 

viable solution for a feasible and significant set of initial states. 

The significance of Definition 3 is that the region of attraction for the terminal state 

regionΩ is only guaranteed to be local within the region 0X . That is to say the system will only 

stabilize when initialized within the region 0X . This concept is identical to that described in the 

feasibility theorem presented in the second section. 
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Heuristic Receding Horizon Control 

Motivated by the desire to unify the planning and control tasks for an AGV, Remark 1 

proposes RHC as an elegant solution to combine the two problems into one. Unfortunately, 

traditional methods of optimization required for RHC hamper the ability to use the technique for 

electro-mechanical systems. This is due to the time consuming nature of the online optimization, 

which is usually much longer than the system response time. As a means to greatly reduce online 

computation, this dissertation proposes the idea of Heuristic Receding Horizon Control (HRHC). 

In HRHC, heuristic information about the problem is used to maximize the performance of an 

online search of the system’s input and state spaces. This search is then substituted in place of 

the usual optimization routines. 

A proven algorithm for heuristic searching in a finite decision space is the A* search. 

Section II of this chapter has presented the formal basis for the algorithm’s admissibility and its 

general computation. The direct consequence of using the A* search for RHC is that a quantized 

input space must be used for this system. This quantization in turn has further consequences on 

the performance and stability of the system, which must now be characterized in a different form 

when compared to classic stability metrics. These effects have been detailed in Section III, and 

the critical definitions and concepts presented in that section are now required for the complete 

stability analysis of HRHC. 

To begin, the general cost optimization problem, subject to the terminal state constraint is 

revisited, with the added constraint that the input set be that of the quantized input spaceU . Thus 

the RHC optimization problem now takes on the form: 
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Furthermore, the A* minimum node-to-node transition cost function ( )k ⋅  is also defined 

such that it is equivalent to that of the RHC general cost function given in (3.6), by taking 

advantage of the node to state relationship functions provided in (3.13): 

 
( ) ( ) ( )( )

( ){
,

1

, min ,
i j

j
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u n n k i
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k n n L xnode n unode n
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+

=

∈Γ

∑
. (3.21) 

Also the expansion function Gamma is more completely defined as the union of all 

generated nodes over the quantized input set U and extrapolated though the dynamics function 

( )f i , thus yielding: 
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X
. (3.22) 

The combination of the two techniques used in HRHC, namely the A* search algorithm 

and Receding Horizon Control, is based off of the key concept that the general value function 

presented in (3.6), is obviously related to the A* cost-to-go function, which is given in (3.14). 

 Lemma 1: The RHC optimal value function ( )( )V x t∗ subject to the quantization 

constraints ; ( )u x t T∈ + ∈ΩU  is equivalent to the A* cost-to-go function ( )ih n when the 
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function ( ),i jk n n is defined as in (3.21) with the additional condition that the terminal 

state ( )x t T+ is represented by node jn  and | ( )g G xnode g∀ ∈ ∈Ω . 

Proof: Given that ( ) ( )kxnode n x τ= , implies node kn represents the system state at arbitrary 

timeτ . Since ( )kh n is the minimum cost from node kn , to the goal region G, via the expansion 

operator ( )Γ ⋅ , then the cost accumulated over each state transition arc to the goal will equal that 

of the identical state transition sequence calculated via (3.6), and since ( )Γ ⋅ is constrained to 

expand only quantized inputs through the mapping (3.10), then the state transitions will be 

restricted to the quantized permitted inputs used in the optimization problem(3.20). Therefore, 

the A* cost-to-go function is written more completely by the equations: 

 
( ) ( ) ( )( )
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It can be deduced from this nested minimization of the cost function that the overall 

minimum cost via a set of node input commands ,i ju n n⎡ ⎤⎣ ⎦ , will be the same for a single 

minimization subject to the additional constraint jn G∈ . Thus the nested minimization can be 

written as a single minimization in the form: 
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In addition, if j is chosen such that ( ) ( )jxnode n x t T≡ + , or in other words all terminal 

nodes at generation j represent the system at time t T+ , and since the expansion operator is 

constrained to quantized input extrapolations through the dynamics function (3.1), and limited to 

the constrained state-spaceX , then the constraints of (3.24) are identical to (3.20), and thus 

 ( ) ( )( )*
ih n V x t= . (3.25) 

Theorem 1: If the A* heuristic function ( )ˆ
ih n is selected such that ( ) ( )*ˆ ( )ih n V x t≤ then the 

algorithm will terminate with a solution node, which when traced back to the start node 

represents an input decision sequence with the equivalent optimal value function V*(x) subject 

to the constraints of equation (3.20). 

Proof: From lemma 1, it is clear that the optimal value function and the A* cost-to-go 

functions are equivalent. The proof of Theorem 1 then follows from the A* admissibility 

Theorem referenced in the third section. If the heuristic function is selected such 

that ( ) ( )*ˆ ( )ih n V x t≤ , then obviously ( ) ( )ˆ
i ih n h n≤ , and therefore by the A* Theorem it is known 

that the algorithm will terminate with an admissible solution, and so the corresponding state 

transition sequence will be the equivalent of one determined with the quantized and constrained 

optimization problem of (3.20). 

The stability criteria of HRHC follow that of the suboptimal RHC (Feasibility Implies 

Stability) theorem referenced in Section II. Since the A* quantized optimal solution sequence has 

to be suboptimal compared to the continuous input optimal solution, then the conditions that 

HRHC must meet in order to maintain system stability must be relaxed to those of the 

suboptimal requirements. The first condition of the suboptimal RHC theorem is satisfied by the 

design of the cost function, which can be chosen such that it is lower bounded by a class K-
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function. The second condition is also easy to satisfy by imposing an additional constraint on the 

search whereby the cost values along the solved trajectories must decrease by at least 

( ) ( )( ),L x t u tμ where ( ]0,1μ∈ is just a constant. Lastly the third criteria is usually satisfied by 

assumption, however as will be discussed in the next chapter this constraint is less important for 

quantized systems where one can find some controlled-invariant set Ω , or even less important, 

when the system is simply turned off in the terminal state region. The main purpose of HRHC is 

to find a fast solution that will drive the system towards the goal region. With parts one and two 

of the feasibility theorem met, that is all one needs to do the job. 

An outline of the HRHC algorithm is given in Table 3-2. The basic process is to first 

generate the A* start node based off of the system’s current state, input and a null parent node 

pointer. Then an A* search is conducted, in order to find the least cost path from the start node to 

the goal region. The search differs slightly from the one outlined in Table, in that the goal test 

checks the state represented by the node for membership in the goal region setΩ . Also, the 

solution node is not returned rather it is traced back to find the initial optimal input command in 

the sequence. If a solution doesn’t exist then the controller faults and external techniques could 

take corrective action. 

The outlined algorithm only represents a single iteration of the HRHC control loop, and 

therefore the process is repeated online at a fixed interval, with state feedback information and 

any changes to the goal set if they exist. 

Dual-Frequency Receding Horizon Control 

For systems capable of providing feedback information at a rate higher than that required 

for predictive planning and control, it may be desirable to take advantage of the feedback in real-

time, rather than postponing any state updates until the next RHC optimization iteration. 
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Furthermore, since RHC requires the prediction and optimization time steps to equal that of the 

state update period, if the update frequency is very high, then too many intermediate steps to the 

desired horizon time may be required. 

The purpose of Dual-Frequency Receding Horizon Control (DFRHC) is to allow predictive 

optimization out to a desired time horizon, while simultaneously reducing the total number of 

planning steps and integrating feedback information at its real-time rate. The method works by 

predicting the system state response through a series of constant input commands, much in the 

same way classic RHC works. The difference is that the constant input commands are held over 

a time step period which is a multiple of the shorter feedback period. For example, if the 

feedback period is one millisecond, then the optimization prediction period may be five 

milliseconds. This lower frequency prediction sequence is then optimized and the first command 

in the sequence is executed for one millisecond. Then the process repeats, by again predicting the 

system’s response through a chain of five millisecond input commands out to the time horizon. 

Figure  diagrams the general DFRHC process. Shown there is a three step planning sequence out 

to the time horizon T, where the prediction period is denoted as p. This planning period p is just 

some constant integer greater than the feedback period, which is just one for the example. The 

first input in the control sequence is then applied to the system for one feedback cycle, and the 

lower frequency optimization process is repeated to determine a new command. 

The name Dual-Frequency, comes from the fact that the optimization prediction steps are 

planned as if they are to be executed at one frequency, when actually only the first command in 

the sequence is used as the system input for the feedback cycle, which is operating at a second 

fixed frequency. 
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This method has several advantages, when compared to classic RHC. One of the benefits is 

the ability to maintain optimization computability in real-time, over an extended time horizon. 

The reason for this is that since the time of computation increases exponentially with the number 

of planning steps, by reducing the number of steps out to the horizon one can decrease 

computation. Because of this, the method also allows for a longer time horizon, which increases 

the region of attraction for the controller, and allows for a larger envelope of system operation. 

Another important lead is that maintaining feedback at a high rate, allows for faster disturbance 

rejection, and increases robustness with respect to model inaccuracies, because of the system’s 

ability to react to unpredicted changes faster. 

A disadvantage however is that because there are fewer planning steps, any obtainable 

state trajectories are more constrained. Therefore, this will result in a higher cost value function, 

and will produce results less optimal than a high frequency input sequence. 

An illustrative example that explains the strategy behind DFRHC can be presented in the 

form of an investment planning problem. Imagine for example a scenario where some investor is 

planning a five year investment policy. The classic RHC method would perhaps have the plan 

call for purchases and sales once a year and these transactions would be planned and predicted 

over what the investor thought the market was going to do for the next five years. However, if 

there were a market crash at the midpoint of the year, the initial strategy would not allow for 

rapid transactions to correct for the unforeseen crash. The investor would have to wait for the 

next year in order to plan and execute new transactions.  

A better strategy would be to plan transactions over the long term, and reevaluate those 

transactions on a frequent basis. To reduce complexity, the investments would not be planned at 

the same frequency as the reevaluations, but would rather represent only a broad strategy over 
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the five year period. This way, if a market crash did happen, the frequent reevaluations would 

allow for a rapid correction in the long term plan. This is the essence of DFRHC, changes to the 

plan can happen fast as new information becomes available, and this way if a large unpredicted 

event happens it can be accounted for right away. 

The computation process of DFRHC is nearly identical to the classic RHC with the 

exception that the intermediate predicted states are calculated recursively through the dynamics 

function (3.1), over each individual planning step. If the planning period is specified as p state 

update periods the calculation of the a future state ( )x t p+ given a constant input u is 

 ( ) ( )( )( )1 2 ... ( ), , ,px t p f f f x t u u u+ = , (3.26) 

where subscripts 1 through p simply represent the iteration of the recursively calculated state 

update function. 

It should also be noted that DFRHC is very easily incorporated into HRHC since the only 

change to the calculation is that the predicted states must be calculated recursively as in function 

(3.26). This requires only a trivial change to the node expansion function. 

Conclusions 

This chapter has introduced two new and novel RHC advancements. The first is HRHC, in 

which the general strategy is to employ heuristic information about the control problem being 

represented in order to maximize the performance of the required online optimization problem. 

This is done by replacing any usual optimization methods, which are often too slow for electro-

mechanical systems, with an A* search algorithm. This algorithm is designed to take advantage 

of heuristic information during the search process for any system defined in a state-space. 

The second technique is DFRHC, where the general concept is to optimize a state 

trajectory over a set of extended period planning steps. The steps are planned at a frequency 
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lower than that of the feedback update frequency, and then the process repeats after a single 

feedback iteration. 

Both methods are easily combined together, which allows for a combined effect that 

further increases optimization performance to an extended time horizon. This combination is 

simple to do because the expansion operation in the A* search is simply changed to extrapolate 

state trajectories over a repeated single input command. 

One very important item not discussed in this chapter is the ability to use RHC methods to 

plan AGV motion through an obstacle riddled environment. As per Remark 1 it should be 

possible to use RHC to execute simultaneously planning and control. However, in order to 

incorporate motion optimization around obstacles or though some other complex structured 

environment, then some non-trivial changes must be made to the setup of the RHC problem. 

These changes and their effects on system stability and performance are the focus of the 

following chapter.  
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Table 3-1: The algorithm AStarSearch is used to find an admissible solution sequence to a goal 
region from a given start node. It requires the definition of an admissible cost 
function, and expansion process, in order to successfully execute. 

Line Action Comment 
1: Algorithm AStarSearch( s, G):  
2:  O s=  // Let the open set equal the start node 
3:  C =∅  // Let the closed set equal null 
4:  while O ≠ ∅  do // While the open set is not empty 
5:   ( )ˆargmin i

i
n f O=  // Find the minimum cost estimate node on open 

6:   O O n= −  // Remove the node from open 
7:   C C n= ∪  // Put the node on closed 
8:   if n G∈  then // If the node is a member of the goal set 
9:    return n // Return the solution node 
10:   endif // End of if statement 
11:   ( )O O n= ∪Γ  // Expand the node and put successors on open 

12:  endwhile // End of while loop 
13:  return ∅  // Return no solution found 
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Table 3-2: This table represents the algorithm for a single HRHC iteration. This process is 
repeated online at a fixed rate, with feedback state, input and goal information. 

Line Action Comment 
1: Algorithm HeuristicRHC( x, u,Ω ):  
2:  ( ), ,s node x u= ∅  // Initialize start node to current state and control 

  // Begin to conduct an A* search 
3:  O s=  // Let the open set equal the start node 
4:  C =∅  // Let the closed set equal null 
5:  while O ≠ ∅  do // While the open set is not empty 
6:   ( )ˆargmin i

i
n f O=  // Find the minimum cost estimate node on open 

7:   O O n= −  // Remove the node from open 
8:   C C n= ∪  // Put the node on closed 
9:   if ( )xnode n ∈Ω  then // If the node state is a member of the goal set 
10:    endwhile // A solution has been found, so end the search 
11:   endif // End of if statement 
12:   ( )O O n= ∪Γ  // Expand the node and put successors on open 

13:   n =∅  // Reset the node to null 
14:  endwhile // End of while loop 
  // Now trace back the solution 
15:  if n ≠ ∅ then // If a goal node has been found 
16:   while ( )p n ≠ ∅  do // Loop back until the start node is reached 

17:    ( )n p n=  // Set the current node equal to its parent 

18:   endwhile // End of while loop 
19:   return unode(n) // Return the initial optimal control input 
20:  else // Else no solution has been node found 
21:   return ∅  // Return null to indicate a fault 
22:  endif // End of if statement 
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Figure 3-1: Receding horizon control is the optimization of an open-loop sequence of system 

inputs, in order to produce a minimal cost state trajectory and then repeating the 
process online. This diagram shows a typical piecewise constant input sequence with 
the corresponding measured and predicted state trajectories. 
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Figure 3-2: The quantization of the system’s input space prevents the optimization problem from 

achieving true optimal performance. The true optimal control input lies somewhere in 
the control space, but the probability of finding that sequence in the quantized input 
space is very low. Hence, the quantized system will always achieve only a suboptimal 
state trajectory. 
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Figure 3-3: This diagram identifies the basic DFRHC scheme. Notice that there are two distinct 

time frequencies, one for state feedback and re-optimization, and the other for the 
prediction steps to the horizon. The process optimizes an input sequence, predicted 
with some input time period p, and then repeats the optimization after state 
information has been updated after a single feedback period. 
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CHAPTER 4 
APPLIED APPROACH AND IMPLEMENTATION 

Introduction 

The need to implement online planning and real-time control on the CIMAR NaviGator 

AGV was the driving motivation behind the work presented in this dissertation. Using the 

theoretical concepts and mathematics described in Chapter 3, simultaneous planning and control 

was put into operation on the vehicle through the use of Heuristic Receding Horizon Control 

(HRHC), combined with Dual-Frequency Receding Horizon Control (DFRHC). Both of which 

are the new and novel theoretical concepts presented by this dissertation. 

The NaviGator has served, as the basis platform for implementation and testing of these 

concepts. In the overall NaviGator control system, the implemented novel planning and control 

task is compartmentalized into a software component called the Reactive Driver (RD). Figure 4-

1 shows a block diagram of this control system with the RD component residing within the 

Intelligence element. The RD allows the planning and control functionality to be decomposed 

into a separate compact module. By breaking the overall system down into smaller components 

such as this, the implementation of other tasks and capabilities like environment sensing, and low 

level vehicle actuation, becomes less complicated because they are only loosely coupled to the 

rest of the system.  

The RD is responsible for closing the loop between sensors and actuators. As such 

information sensed from the environment is first processed by feedback components called 

Smart Sensors. These sensors process information from sensed raw data and normalize it into a 

standard form which can be easily fused with similar data from other Smart Sensors. The exact 

format of and information represented by this data will be discussed in the second section of this 

chapter. After the sensor data is fused together by an Arbiter component, it proceeds to the 
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Reactive Driver, where the RHC algorithm of this dissertation attempts to find actuator 

commands which regulate the vehicle onto a predetermined motion path. This flow of 

information is inline with the sense-plan-act scheme mentioned in chapter I, since it is repeated 

continuously throughout the systems online operation, and also because the planning step is 

inherent to the RHC functionality of the Reactive Driver. 

The use of environmental sensors within the system leads to one major issue which is not 

theoretically addressed in the previous chapter. Namely the issue that comes into play during 

implementation is Obstacle Avoidance (OA). The introduction of obstacles into the vehicle’s 

task and configuration space has severe repercussions on the system’s stability and performance. 

For RHC to work, it is essential that the OA problem be cast into a form that allows the 

optimization procedure to find a valid control solution that will guide the system safely through 

the state space. This requires the obstacles and environment to be represented in a way that 

elegantly blends the OA problem with the trajectory or state regulation problem during the online 

computation. In turn, the value function must be modified to reflect the inclusion of additional 

environmental or state-environment interaction costs. 

An essential section of this chapter addresses in detail the issues of OA. It is a vital 

discussion because OA capability for AGVs is what allows them to operate and execute different 

missions through their often cluttered and unpredictable environments. Since knowledge of the 

environment structure is usually incomplete prior to task execution, the robotic vehicle must 

have some OA functionality. This also means that the system must also have the ability to sense 

any obstacles or other undesired states, and a way to represent what is sensed so that it can be 

used by other processes that plan the vehicle’s motion. This ability, on the NaviGator vehicle, is 

implemented as mentioned, within the Smart Sensor components, and is not the focus of this 
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dissertation. However, the output of those sensors is consumed by the Reactive Driver 

component of the system and therefore needs to and will be discussed. 

Aside from the ability to sense disagreeable state configurations, an AGV can also benefit 

from the capacity to sense desirable states, terrain or conditions. This allows the system to 

maximize the chances of successful task execution. An example of this would be sensing a road 

adjacent to the vehicle’s current path and then switching onto driving that road if it were more 

conducive than the current path. This ability, like OA, can also be incorporated into the RHC 

task, assuming that the desirable state configurations are represented in a way that allows such 

information to be combined with state regulation costs, within the optimization routine. The RD 

component in conjunction with the NaviGator’s Smart Sensors, allows for this behavior, and is 

implemented in unison with the OA behavior. The ability to both avoid obstacles and track 

desirable terrain is inherent in the design of the Smart Sensor / Reactive Driver interaction, and 

will be addressed in detail later in this chapter. 

Obstacle Avoidance 

From Remark 1 in the previous chapter, it is suggested that RHC applied to an autonomous 

vehicle system will allow for unified motion planning and control. If the optimization problem is 

cast correctly, this should inherently include an OA capability. However, it should first be 

considered that the regulation of a vehicle onto some desired state motion structure, while at the 

same time avoiding any undesired regions in the configuration space (due to obstacles, or other 

high risk hazards) is by nature contradictory. For example, if the system is required to drive 

along a particular geometric path, avoiding an obstacle in the way of that path also demands that 

the vehicle depart from the initial intended trajectory. This behavior, when viewed from the 

classical control sense, is unstable with respect to the goal. Error signals used for path regulation 

would inherently increase during the avoidance maneuver. However, the overall behavior, when 
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viewed from the system user, seems desirable and in a new sense “stable.” The implications of 

this simple concept are far reaching in their impact on the notions of system stability and 

performance. To simply put that the idea of stability requires the continuous minimization of all 

error signals for all time is no longer valid. The desired performance of the system, and what 

could be considered “stable behavior,” now involves the movement around and away from the 

original goal structure. 

The essence of these concepts is that stability, in the presence of obstacles, requires the 

minimization of a properly designed value function, not the minimization of only state error 

signals. This therefore suggests that unstable behavior is coupled to the sub-optimality of the cost 

function and open-loop input sequence of the RHC process. Meaning that if the value function, 

which incorporates a cost component due to environment, and obstacles, is not minimized then 

the probability of unstable behavior such as obstacle collisions increases.  

A value function designed to provide both stable control (motion regulation) and stable 

behavior (obstacle avoidance), must incorporate both classic state regulation costs, and a state 

environment cost. The state environment cost adds a new term(s) to the value function, which 

was not discussed in Chapter 3. This new component describes the cost associated with the 

system occupying a given state in it operating environment, which in general can be attributed to 

obstacles, terrain quality, etc. Equation (4.1) presents a new cost function form with an additional 

term ( )P x , which describes the added cost due to the system’s state within its environment. It 

effectively trades off state error signal value with obstacle avoidance value. Meaning that if the 

cost of occupying a given state due to ( )P x  increases, the overall optimization will allow for a 

slight increase in the remaining two terms in order to reduce the cost due to the environment. The 

remaining terms are identical to the value functions discussed in the previous chapter. The cost 
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due to error in motion regulation is expressed within ( )Q x , and the cost due to input command is 

given by ( )R u . Notice that both ( )P x and ( )Q x are both functions of the systems state. The 

difference in these two functions is that, ( )Q x is a mapping of state to error signals (which are 

based upon a predetermined motion structure) and ( )P x requires a mapping of system state to 

environmental cost. 

 ( )( ) ( ) ( )
u

V x P x Q x R u= + +∑  (4.1) 

The addition of the new term ( )P x  to the RHC value function has a significant impact on 

the Feasibility Theorem for Suboptimal RHC referenced in the second section of Chapter 3. Of 

the three conditions of that theorem, only one can be partially satisfied when the state 

environmental cost ( )P x  is included. 

The first condition states that the RHC value function must be lower bounded by some 

class K-function ( )α ⋅ . Assuming the term ( )P x  is designed such that it is always positive, this 

condition can still be satisfied, since it is simply adding a positive number to the remaining 

portions of the function which can already be lower bounded by ( )α ⋅ . However, the condition 

also states that the value function is equal to zero at its origin. Since ( )P x , must be allowed to 

have a value greater than zero for cases where obstacles are present at the origin, this condition 

cannot be fully satisfied. 

The second condition states that the cost function V(x) must be monotonically decreasing 

for successive time steps of the RHC solution sequence. This criterion cannot be satisfied when 

obstacle avoidance is included in the optimization problem. The reason for this is that in order to 
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avoid an undesirable state during motion tracking, additional cost may be incurred on by the 

value function in order to produce a desirable avoidance maneuver. 

Finally the third condition cannot be guaranteed since the uniqueness of the control input 

for any given state can no longer be certain. 

A simple example that demonstrates all of these cases is depicted in Figure 4-2, which 

shows a vehicle attempting to track a straight line and a single obstacle in way of that track. In 

this case it is possible to find two opposite but equal solutions to the RHC problem. Therefore, it 

is not possible to guarantee the uniqueness of a control solution or to ensure the control input is a 

well behaved function of the system’s state, when obstacle or environment cost is included in the 

RHC value function. Also, since the cost of the value function inherently increases during some 

OA maneuvers such as the one depicted in Figure 4-2, it is not possible to satisfy the decreasing 

cost constraint which is required to prove feasible stability. 

Although it can be shown that cases may exist which disagree with the criteria presented 

by the Suboptimal Feasibility Theorem, under nominal conditions they may still be satisfied 

whilst including obstacle avoidance as part of the RHC optimization. In addition, for all cases in 

which the state environment cost function ( )P x  is zero, such as when no obstacles are present in 

the immediate environment, then the value function simply reduces to the classic RHC form, and 

all of the stability criteria may be applied as usual. However, for simplicity in this 

implementation, the three criteria are not explicitly verified. Rather, the control solution is 

guaranteed to be admissible, by designing a valid A* heuristic function. This topic is discussed 

in detail in the next section. 

The ability to formulate the environmental cost component ( )P x  online, allows the RHC 

optimization problem to dynamically modify the vehicle’s predicted motion, in order to avoid 



 

76 

obstacles or drive on more desirable terrain. This online cost mapping is a functionality that must 

be provided by exteroceptive sensors since the required information is originating from the 

vehicle’s surroundings. Thus information provided by those sensors must be in a form that 

effectively represents the cost of occupying a given state in the workspace. For implementation 

on the NaviGator, this information is provided in a form known as a traversability Grid. The 

traversability grid models the system’s workspace as a raster image in which each pixel contains 

a value that estimates how desirable the terrain and space contained within that pixel is for the 

vehicle to occupy. The traversability value is effectively a gain like parameter that allows for a 

tradeoff between input effort or motion error and quality of terrain. The worse the terrain, the 

more willing the RHC is to add error cost to the determined path in order to circumvent that poor 

area. 

Obstacles are represented by a traversability grid in much the same way as they are in an 

Occupancy grid. Both positive and negative obstacles (such as pot holes) within the environment 

can be mapped equivalently to poor traversability regions. In fact, this is one feature of the 

traversability grid that cannot be effectively represented by an Occupancy grid. In an Occupancy 

grid, only information about the “occupied” or “free” state of a pixel is given, whereas a 

traversability grid can encapsulate these pieces of information and also describe terrain quality. 

This means that any type of terrain can be mapped into traversability space without having to 

convey anything specific about the given topography. In the traversability sense, positive 

obstacles appear the same as negative obstacles or steep slopes. Traversability also allows for the 

evaluation and scoring of unoccupied space. For example, pavement can be classified as more 

traversable than sand, grass or gravel. Therefore the vehicle is able to select the best possible 

path for motion when it is presented with different types of terrain. 
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The units of measurement for the values contained within the traversability grid must also 

be carefully considered. As aforementioned, the values are used to tradeoff occupying a given 

space with motion structure error and or input effort. As such, the grid values are essentially 

dimensionless, and do not describe an amount of travel energy required or probability of safe 

motion, etc. This is because values with these types of physical units would inherently change as 

a function of the system’s complete state (i.e. speed and orientation), and would require much 

more information about the environment to be mapped by sensors. It would also require a more 

complex ( )P x cost function. Therefore, traversability as discussed in this dissertation is only 

considered as a qualitative parameter that can simply and effectively allow the Reactive Driver 

component to make decisions about the desired vehicle motion. Figure 4-3 presents the 

traversability grid concept. In this image a model of the surrounding local environment is 

mapped into the corresponding traversability space. The area outside of the vehicle’s 

commanded operating space is all mapped to poor (shown in red) traversability values. The 

values go from shades of red, which are poor, to shades of green and blue, which are desirable. 

In implementation on the NaviGator system, the traversability grid format for all sensors 

feeding the Reactive Driver component is a 121 by 121 pixel rasterized image with a resolution 

of 0.5m by 0.5m per pixel. Each pixel in the grid contains is a 4-bit integer, which can represent 

a traversability value or one of several special case values. The grid is designed such that the 

vehicle is always positioned at the center of the image, and as the vehicle moves the values 

within the image are shifted so that the vehicle remains in the center. When shifted, new values 

around the edge of the image are updated with new data from sensors. The coordinates within the 

image are easily mapped to local vehicle coordinates and therefore the traversability grid serves 

as the environmental cost function ( )P x , for implementation in the RHC value function. 



 

78 

However, since the orientation of the vehicle at each pixel within the image is not considered, 

only the vehicle’s position within the grid is used to determine environmental cost, and not its 

full state (position and orientation).  

The complete value function used for implementation in the RD component, which 

includes traversability, cross track error, and heading error, has been designed as: 

 ( ) ( )( ) ( )( ) ( )( )( )2 2 2
( ) * *

t T

trav herr
t

V x t k Trav x k Herr x XTrack x
τ

τ τ τ
+

=

= + +∑ . (4.2) 

Where the sub function ( )( )Trav x τ  accounts for the environmental cost due to obstacles 

and terrain quality, and has a corresponding optimization weight travk . The remaining two sub 

functions provide transformations of the system’s state into path tracking error coordinates, and 

allow for optimization of the vehicles motion tracking of a desired trajectory. The heading error 

function, ( )( )Herr x τ  is multiplied by an optimization weight herrk , whereas the cross track error 

function, ( )( )XTrack x τ  is not altered. This allows for normalization of cost units, using the 

cross track error as the reference base for overall value. Figure 4-4 presents a geometric 

representation of the tracking error system measurements, Herr and XTrack. 

Thus the implementer is free to modify the remaining weight factors to tradeoff 

traversability, and heading error with cross track error as a baseline. Note that input effort / 

control value has been neglected here since there is not term in the function penalizing it. It has 

been found through extensive testing that desirable results are obtainable without control effort 

in the cost function, and that the overall optimization is less constrained to find an appropriate 

solution with the value function provided in equation (4.2). 
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For implementation of HRHC where the A* search is used in place of a classic 

optimization routine, the depth cost function ( )G n , must be specified. Since the general value 

function provided in (4.2) specifies the cost structure for the underlying problem, a variation of 

that function is used as the depth function: 

 

( ) ( )( )
( )( )

( )( )
( )( )

2

2

2

*

*

i trav i

herr i

i

i

G n k Trav xnode n

k Herr xnode n

XTrack xnode n

G pnode n

=

+

+

+

 (4.3) 

 ( )ipnode n∀ ≠ ∅ . 

In this form the depth function is defined recursively, and is dependent upon the depth cost 

of the parent of node in . For the root node ( )s  the depth function is simply: 

 ( ) 0G s = . (4.4) 

Admissible Heuristics for HRHC 

The cost function presented in the previous section provides a means for the RHC 

implementation to optimize both obstacle avoidance and motion tracking online. In the previous 

chapter the new technique, Heuristic Receding Horizon Control (HRHC), offers a means to use 

heuristic information and the A* search algorithm to implement the optimization task within the 

overall RHC scheme. One essential requirement for HRHC then is to establish a heuristic 

function which can estimate a cost-to-go for the value function provided in the second section of 

this chapter. As will be shown in this section the heuristic function can take on many different 

forms, each with various strengths and weaknesses. Finally the form decided upon for 

implementation in the NaviGator’s RD component will be presented. 
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Cost functions for a typical RHC and a typical A* implementation tend to be very different 

in nature. Classically, A* state to state transition or “arc” cost values are relatively constant or 

simply depend on the transition distance, whereas RHC state transition costs decrease as the 

system approaches the origin or goal. Regardless of this difference, the general method or 

technique for HRHC allows for a total cost function f (n) to take on any form, so long as it 

satisfies some basic criteria. First, the arc or state transition cost must always be greater than 

zero. Since the value function provided in (4.2), is positive definite and provides this cost 

measurement, the first condition is satisfied. The second condition requires that the heuristic 

function ( )h x  be an underestimate of the total cost-to-go for the provided value function. 

Therefore, careful consideration for the heuristic function must be taken in its design to ensure 

that it is upper bounded by the true optimal total to the goal. If this condition is violated then the 

algorithm A* is no longer admissible and may determine an invalid solution sequence. 

A good approach to heuristic function design is to analyze each term in the RHC value 

function, and to establish a heuristic estimator for each of those terms. Then all of the partial 

heuristics can be summed to obtain the complete heuristic function. 

For implementation within the RD component on the NaviGator, it is desired to find a 

heuristic estimator that approaches the true minimum cost solution over the time horizon for 

equation (4.2). In analyzing that function term by term, it can be seen that the first term provides 

the cost due to environment, which is directly related to the mapped traversability value. The 

ideal heuristic for this term would provide a cost sum over the remaining time interval with the 

true traversability encountered along the optimal state trajectory. Since that trajectory is not 

known, an estimate or prediction of the encountered traversability must be made. Also, to adhere 

to the admissibility constraint of the A* search, the traversability estimate must not exceed the 



 

81 

optimal solutions value, so a conservative approach must be taken. In other words, the predicted 

traversability cost must be less than the actual future remaining time traversability cost. One 

simple heuristic function that estimates the future incurred traversability cost, at a given time 

(τ ), within the HRHC search is: 

 ( ) ( )2ˆ mintrav trav x

t Th k Trav xττ
τ ∀

+ −⎛ ⎞= ⎜ ⎟Δ⎝ ⎠
, (4.5) 

where τΔ  is the time step period of the search. This heuristic estimates that the total future cost 

due to traversability is equal to the minimum traversability value of any possible state, multiplied 

by the traversability cost weight, and the number of future time steps. This function is the 

heuristic estimate used by the RD component in implementation. It provides a fast method for 

calculating an estimate which is guaranteed to be upper bound by the true future traversability 

cost. It is fast because the minimum traversability need only be calculated once, and then that 

minimum value may be applied for calculating each search node’s heuristic cost. Other heuristics 

which are more informed about the underlying system dynamics and problem are able to 

calculate a more accurate heuristic. However, these functions tend to be much more demanding 

since the future minimum traversability is truly a function of the systems state and must be 

recalculated for each search node. Thus the time saved in reducing the total number of explored 

nodes, by using a better heuristic, is lost since the heuristic itself takes much more computation 

time, and so more advanced heuristics are not worth implementation. 

Heuristic estimates for the heading error and cross track error cost components are both 

calculated directly from the system’s state at any given node within the A* search. Unlike the 

traversability estimate which must have knowledge of the systems surroundings, and therefore 

must perform a separate search to find the future minimum traversability, the system state only 
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dependent costs of heading and cross track error may be calculated by pure geometric and 

kinematic constraints. 

For the heading error heuristic design, the total incurred cost may be lower bounded by 

knowledge of the vehicle’s minimum turning radius constraint, and a constant speed assumption. 

In more detail, since the NaviGator is a front wheel steered vehicle, there is a minimum turning 

radius that the platform is able to drive. At a given speed (the one at which the HRHC search is 

attempting to optimize motion) there exists a maximum turning rate for the vehicle. By 

calculating this maximum turning rate at any given node’s state in the search, the future incurred 

heading error cost may be estimated with the equation: 
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The above equation assumes that the heading error will decrease linearly at a rate equal to 

the maximum vehicle turning rate, where v  is the vehicle’s desired speed, and minr is the 

minimum turning radius. The estimated future cost is therefore at least the summation of the 

minimum possible heading errors, up until the point at which a heading error of zero is possible, 

and from thereon it is assumed to remain zero. For all time greater than the time at which the 

heading error would be equal to zero, the future incurred cost is assumed to also be zero or 
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because it is assumed that the heading error will become zero and remain zero before the next 

search time at τ τ+ Δ , and therefore no future cost will exist. 



 

83 

The cross track error heuristic is calculated in much the same way as the heading heuristic. 

For this estimate, it is assumed that the vehicle’s cross track position will decrease as if it were 

headed perpendicularly towards the desired motion path. This clearly will lower bound the true 

future cost since the vehicle must approach the path at an angle near parallel with a line tangent 

to the path, if it is to converge onto it. To calculate the heuristic then, a summation of the 

minimum future possible cross track errors is made. The following equation makes this 

calculation, within the RD component, and assumes that the vehicle’s desired speed will remain 

constant 
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Since the actual accumulated cost given in the value function (4.2) does not multiply the 

cross track cost by a weighting factor, then neither does the heuristic given in (4.8). As in the 

heading error heuristic it is also assumed for the cross track error, that once the error reaches 

zero, it will remain zero for all future time. Therefore for the heuristic estimate, the summation 

of future estimated cross track errors is only defined for those with positive values, and for the 

cases in which the future cross track error is zero the heuristic is also zero and is given by: 

 
( )( )

( )( )

ˆ 0

*

xterrh x

XTrack x v

τ

τ τ

=

∀ < Δ
. (4.9) 

 The total heuristic function is simply the summation of the partial heuristics given above 

and can be expressed as: 

 ( )( ) ( )( ) ( )( ) ( )( )ˆ ˆ ˆ ˆ
trav herr xtrackh x h x h x h xτ τ τ τ= + + . (4.10) 
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The above heuristic function provides a lower bound estimate of the true future incurred 

cost of the optimal state trajectory, and therefore should allow for the A* search to yield an 

admissible solution. The solution obtained should satisfy the basic feasibility criteria, necessary 

for stable Receding Horizon Control, especially under obstacle free circumstances. It should be 

noted that there seems to be a strong connection between the heuristic criteria of A* and the 

second feasibility implies stability criterion. Essentially if the heuristic function is not admissible 

then it may not always underestimate the true future cost to goal. In that case, the solution will 

not be admissible and will almost certainly violate the second stability criterion. This simple 

connection implies that an admissible heuristic function may account for the majority of the 

HRHC algorithm’s stability and control effectiveness. 

Reactive Driver Implementation 

The Reactive Driver (RD) component of the NaviGator’s overall control system houses the 

HRHC implementation of this thesis. Along with the cost functions and heuristics detailed in the 

previous two sections, there are a number of important functions of the RD that merit discussion, 

and complete the system integration puzzle, which allows for the RD to provide true 

functionality in the real-world system. 

As shown in Figure 4-1, the RD is one of many components which makeup the complete 

autonomous control system. Each of these components is designed as per the Joint Architecture 

for Unmanned Systems (JAUS), and each houses a core functionality that is defined by JAUS. 

JAUS is a standard which specifies a basic structure and methodology for unmanned and 

autonomous systems design and integration. It is intended to aid in the integration of and to 

support interoperability amongst many heterogeneous unmanned systems originating from 

different developers. In addition to the core component architecture, JAUS primarily offers a 

means for common messaging and information exchange among its intended hierarchical 
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network of systems, subsystems and computing nodes. This messaging system is what allows the 

RD to communicate with and control surrounding components in the NaviGator’s control 

system. 

Like all components implemented on the NaviGator, the RD extends a core JAUS 

component template and a corresponding JAUS library, which are implemented in the C 

programming language. The software is built upon the Linux and GNU tool-chain, with its 

extensive set of libraries and compilation utilities such as the GNU C Compiler (gcc). This base 

understructure provides each of the components operating on the NaviGator a means to support 

timing processes, inter and intra nodal communication, as well as multithreading capability.  

The RD component has been implemented to run on a computing node which is made up 

of a Gigabyte motherboard with AMD CPU, 1 GB of RAM, and a 4 GB Compact Flash solid 

state hard drive. The computing node runs the Linux Fedora Core 3 operating system, which 

allows for advanced software development as well as execution directly on the NaviGator. Also, 

the node is connected via a high speed Netgear Ethernet switch to seven other identical 

computers onboard the NaviGator. Each one running its own set of tasks and processes for the 

vehicle’s control system, and all intercommunicating via JAUS base datagram packets which are 

routed through the onboard Ethernet switch.  

The JAUS messaging communication provides essential data to the RD. Specifically, there 

are five data streams originating from other components in the control system, each of which the 

RD requires for complete operation. The data included are: the vehicle’s global position and 

orientation, its velocity state, the state of the surrounding local environment (in the form of a 

traversability grid), feedback from low level actuators, and their health status. Each of these data 

streams is in a form known as a JAUS service connection, which allows for JAUS message 
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reports to be sent on a periodic basis without needing to re-query for the report every time it is 

desired. 

Both the position and velocity JAUS messages originate from the same computing node 

which runs multiple components. One component is the Global Position and Orientation Sensor 

(GPOS), the other is the Velocity State Sensor (VSS). Both of these tasks process feedback from 

low level vehicle state sensors, such as accelerometers, GPS, and odometers, and cast it into the 

proper JAUS message for consumption within the rest of the computing network. 

The traversability grid data is wrapped into a JAUS message which originates from the 

Smart Arbiter (SARB) component, and is a compilation of a number of other grids from lower 

level Smart Sensor components. Each of the Smart Sensor components maps data from a 

physical environment sensor, such as a camera, to a single traversability grid. Then each grid is 

sent to the SARB where it is fused together, to form a composite and more complete estimate of 

the local environment. 

Lastly, information from the component directly below the RD in control loop, the 

Primitive Driver (PD), is fed back up to the RD level. This information includes two data 

streams. One stream contains information about the low level vehicle actuators (steering, throttle 

and brake), specifically the current position of each actuator, and is in the form of a JAUS report 

wrench effort message. (A wrench describes a set of forces and moments, and supports the way 

JAUS abstracts low level platform control.) This wrench is needed to keep an updated model of 

the vehicle, mainly for determining the current front wheel steering angle, and thus allowing for 

accurate state predictions to be made during the HRHC routine. The second stream contains 

information about the health status of the PD itself. This data is important to the RD in order for 

it to maintain control of the vehicle, and to take evasive action if there is a fault within the PD. 
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All JAUS components on the NaviGator are implemented as finite state machines. Each 

one can assume one of seven possible accepted states; they are enumerated and named: Startup, 

Initialize, Standby, Ready, Emergency, Failure, and Shutdown. By monitoring the state of the 

PD the RD is able to infer its health status, and therefore able to maintain a more fault tolerant 

level of control. In most cases the component executes its main task while it is in the Ready state. 

The other states such as Initialize and Standby are included to allow the component to switch its 

behavior in order to establish needed data service connections, disconnect from the rest of the 

system, or to pause for operator control. 

The RD Ready state software is mainly composed of one control loop. Within this loop all 

of the necessary procedures and steps are taken in order to execute its primary purpose which is 

to command the desired vehicle control wrench to the PD. This wrench is the only output signal / 

data stream provided by the RD, and its purpose is to command the vehicle’s steering, throttle 

and brake actuators such that the intended motion of the Receding Horizon Controller is 

executed. The steps in between updating local software variables from the input data streams, 

and the output of the command wrench, include fault detection, determination of the vehicle goal 

state, traversability grid modification, and finally the execution of the HRHC and a simple PID 

loop to control the vehicle’s speed.  

Table, outlines each of these important steps and will be used for reference within this 

section and the rest of the chapter. 

In the first step of the RD control loop data is updated from the five incoming service 

connections detailed above. The next step in the procedure begins to use that data in order to 

detect if any possible faults have occurred. Specifically, in verifying that all critical 

communication streams are still active and that the PD component is still in a health state, 
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waiting to be commanded. The third step will simply switch the RD into the Standby state if it is 

so commanded by the operator. This command is determined by checking the state of the PD, 

and observing if it is also in the Standby state, if so then the RD follows into Standby. 

The fourth step in the procedure requires some special consideration. This is the first step 

in the procedure which requires data from the input path file. The path is provided to the RD by 

an operator as a flat data file, and specifies an a priori motion plan for the vehicle. The file 

contains a data structure which is made up of a list of piecewise continuous path segments. Each 

segment is specified with a starting point latitude and longitude, end point latitude and longitude, 

desired speed, and segment curvature. At this step the RD determines which segment the vehicle 

should attempt to track by analyzing the vehicle’s current position with respect to the path 

segment ahead of the segment it is currently tracking. If the vehicle is closer to the next segment 

than it is to the current segment, then it will switch to tracking the next one in the sequence. 

Since the desired speed may vary from segment to segment, it is necessary in the following 

step to update the current desired speed of the vehicle. This step requires looking forward in time 

on the desired path to check for lower speeds and taking into consideration the vehicles 

deceleration capability. Lower speeds on the path might also be attributable to the curvature of 

the desired path segment. If the curvature is high enough, it may require the vehicle to slow 

down in order to track that segment without risk of rolling the vehicle. This procedure is done by 

finding the minimum path segment speed (due to desired or curvature value) over a nominal 

deceleration period, and then analyzing if that speed requires the vehicle to begin slowing down 

at the present time. If it does, then the current desired vehicle speed is set to a value which 

accounts for deceleration time. If it does not, then the current desired speed is simply set to the 

desired speed of the current path segment. This functionality is equivalent to the equation, 
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 ( ) ( )min *i ii
DesiredSpeed speed s D distTo s⎡ ⎤= +⎣ ⎦ . (4.11) 

Where the functions ( )speed s , and ( )distTo s , determine the desired speed of path 

segment s , and the distance from the vehicle to the start of the path segment respectively. The 

constant D  accounts for a nominal distance based deceleration, measured in meters per second 

per meter. The value used on the NaviGator is tuned to: 0.25 /D mps m= . 

The fifth step, of the RD control loop calculates the latitude, longitude and size of the 

desired RHC goal region. The region is a circle centered at the determined coordinates and its 

size is simply determined by a radius value, calculated in units of meters. The center of the area 

is determined by using the RHC planning time horizon period, and the a priori path data. The 

algorithm projects the vehicle’s current location onto a point perpendicular to the path, and then 

extrapolates out in time, using the current desired speed, to a point that lies somewhere on the 

desired path ahead.  The radius of the goal region is scaled linearly with the desired vehicle 

speed, to allow the discrete planner enough space to seek out, rather than a fixed size goal, which 

might be too narrow to find.  

Two special cases exist in determining the goal point. The first occurs when the goal is 

found to lie outside of the locally mapped traversability space. Since the planner requires 

knowledge of the traversability value at any given state, points outside of the grid region are 

undefined and therefore seeking a goal in that space would require some significant assumptions. 

Rather than plan outside of the traversability defined region, the goal point is simply projected 

onto its boundary, where it meets the desired path. The second special case occurs when the end 

of the path is encountered within the time horizon. If so, the goal point is just set to the endpoint 

of the last path segment. 
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With the desired speed and goal point known, there is one last step required in 

implementation before executing the HRHC algorithm. The step is called grid dilation and serves 

a very practical purpose for obstacle avoidance. Since the vehicle takes up a region of area 

within its local environment, it is necessary to account for its size during planning, in order to 

ensure that there is enough clearance around the vehicle to completely avoid any obstacles. One 

method to do this would be to find the minimum traversability value within a region representing 

the vehicle’s footprint, in order to calculate the traversability cost at any point in the planning 

search. This would thus require a separate minimum traversability value search for every node 

expanded during the A* algorithm’s execution. Since there are many nodes expanded during a 

nominal search, and many pixels to explore for any given footprint configuration, this operation 

would be very cumbersome. A more efficient method is to expand any obstacles within the 

traversability grid, by the approximate size and shape of the vehicle, and then assume the vehicle 

occupies only is a single point in space, during the search routine. This dilation then need only be 

done once per iteration, rather than many times during the search itself. 

Also, since the traversability value is a general description of environment cost, and not 

purely an obstacle representation, it makes sense to dilate the grid by the any minimum 

traversability value within the expansion area, and not solely obstacle values. This guarantees 

that the search will account for vehicle size and shape, even when seeking out desirable 

traversability regions, or avoiding regions of intermediate cost. 

The dilation procedure is implemented as a pixel by pixel loop over the entire grid. For 

each pixel the dilation value is determined by looping again through an area around that pixel, 

and finding the minimum traversability value within that area. The search area is called the 

kernel, and it represents the approximate size and shape of the vehicle. Since the orientation of 
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the vehicle at any given node within the search may vary, the shape of the vehicle, which is 

ideally rectangular, cannot be assumed in any one configuration. Therefore, the shape of the 

kernel is assumed to be a circle, with a radius slightly larger than the half width of the 

NaviGator. Figure 4- is an example of what a traversability grid image looks like before and after 

circular dilation. The circular shape guarantees that if an area is avoided in the dilated image, 

then the vehicle should at least have enough clearance to pass by it at its side. Since the vehicle 

may be approaching the region at a slightly different orientation, the kernel radius is tuned to be 

slightly larger than what is probably needed in order to account for its difference in shape. 

At this point in the RD control loop, all of the required data and values have been 

determined or modified such that the Heuristic Receding Horizon Controller (HRHC) can be 

executed. The purpose of this step is to determine a control input that when commanded to the 

system will yield the desirable motion to both maintain path tracking and if necessary avoid any 

obstacles. The form of this control input is the steering wrench effort portion of the JAUS 

wrench message that will be sent to the Primitive Driver for low level vehicle actuation. This 

value varies from -100 to 100% effort, and essentially maps directly to the steering system for 

turning the front wheels anywhere from 100% left, through 100% right.  

As discussed in the fifth section of Chapter 3 of this dissertation, the HRHC algorithm is 

implemented as a modified A* search. The first step in the routine creates the root node by using 

the current vehicle state feedback (position and orientation), and the current control (steering 

effort). All nodes in the search are stored as a C language data structure, with variable members 

including: cost-to, cost-to-goal estimate, parent node pointer, generation number, and vehicle 

state / control information. A fixed number of theses nodes are allocated in memory prior to 

running the routine for the first time. They are stored in a linked list data structure, named in this 
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implementation “Node Dispenser”, which allows nodes to be divvied out as needed, and can be 

reset quickly by simply resetting a single pointer that indicates the node to be dispensed next. 

This Node Dispenser method has been implemented to optimize the code and increase efficiency, 

verses allocating and freeing a single node, every time one is used. 

The next step in the algorithm establishes the root node onto a set of nodes called the Open 

Set. In this implementation, the Open set has been optimized for searching and sorting according 

to the cost-to-goal estimate which represents the A* ( )f̂ n  value. The optimization is done by 

casting the Open set into a data structure known as a heap stack. A heap stack is a stack of nodes 

divided into multiple levels. The first level in the stack contains a single node, the second level 

contains two nodes of which the node above is parent to. Each level after can store twice as 

many values as the one above it, because the two child per parent relationship continues on as the 

stack grows. In this manner, the stack expands exponentially in the horizontal direction as it 

grows vertically. The heap stack is design to maintain one special property, that is, the parent 

node value is guaranteed to be less than (or greater than, depending upon if the stack is desired to 

be ascending or descending) the two child node values. This relationship ensures that the value at 

the top of the heap stack will always be the minimum or maximum of all nodes. This is very 

desirable for the A* implementation, since finding the minimum cost-to-goal estimate node on 

the Open set is a crucial part of the algorithm. Having the Open set organized in this fashion 

allows for that node to be found in a single step, no search need be conducted. The heap stack 

however, requires to be reordered when a node is popped from or pushed onto it, but because of 

the exponentially growing nature of the heap, this reordering is efficient and can be done in 

( )logO n  computation time, where n  is the number of nodes on the stack.  
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The ability to quickly find and remove the minimum cost estimate node from the heap 

stack is taken advantage of in the next step of the algorithm, where it is removed from the Open 

set and then checked for membership in the goal set. This is done by analyzing if the node’s 

vehicle state is in the goal region. If it is, then a solution node has been found, if not then the A* 

search continues by expanding a new set of child nodes through the expansion function ( )nΓ . 

The expansion function for HRHC is implemented by generating a new set of possible 

control inputs and then predicting their effect by propagating the current node’s state through a 

vehicle model function. The manner in which the control inputs are generated is defined by the 

artificial input space quantization that has been discussed in fourth section of Chapter 3. The true 

input that can be commanded to the PD is a continuous value in the range of -100 to 100% effort. 

However, this would require generating far too many nodes to be practical. Therefore, a finite 

number of nodes, representing a finite set of quantized input commands are expanded, and the 

one sequence yielding the least cost trajectory is found. The first input command associated with 

this sequence is then delivered as the control. 

For the RD, the input space quantization resolution is a tunable parameter that can be 

increased or decreased in order to improve optimality, or increase speed. This means that as the 

quantization resolution is increased, the A* search is able to find a more optimal solution, 

whereas if the resolution is low, the solution is less optimal, and there is a chance that may not be 

found at all. Also the finer the quantization, the more elegant the vehicle control, because the 

input commands will tend to vary only slightly between control iterations. If the quantization is 

low, then as the commands change between control iterations, the vehicle will tend to nudge and 

jolt as the steering wheels move back and forth between commands. 
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The input commands for the NaviGator are generated ad hoc to take advantage of one key 

vehicle constraint. The steering wheel actuator on the NaviGator has a rate limit which only 

allows the wheels to turn up to a maximum speed. This rate limit corresponds to a maximum and 

minimum input command at each execution of the node expansion function. Since the steering is 

rate limited, and there is a finite time between commands in the horizon search, then any 

command higher than the rate limited maximum would yield the same result as the maximum 

itself. Therefore, expanding any nodes with input commands higher than the rate limited 

maximum will not add any value to the search and will only waste search effort. This constraint 

thus allows the input space to be truncated on an expansion basis, and so resolution is increased 

in the truncated space when the number of divisions is held constant. The rate limit on the 

NaviGator vehicle was measured to be: 60 % / seceffort . 

Also, in an effort to minimize search complexity, the quantization resolution is decreased 

as a function of the search depth. This is done because the search resolution as the depth 

increases is less and less critical to successful control, because the goal of the search is to find 

the first input command which leads to a successful state trajectory. Therefore, higher control 

resolution is most important at the root node expansion. 

For each control input determined during the quantization procedure, a search node is 

generated and then its vehicle state is copied from its parent node. This state is then is 

extrapolated through the vehicle model function over the horizon planning time interval, using 

the newly determined control input. The vehicle model used is kinematics based, and works by 

projecting the vehicle’s position and orientation along a straight line, or circular arc, depending 

upon the steering curvature of the vehicle state. Since the rate limit of the steering system has a 

significant impact on the NaviGator’s maneuverability, it is also taken into account in the vehicle 
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model. The model function first determines how much the wheels will move in the given time 

step, based upon the input command and the rate limit. The effective path curvature is then 

calculated by averaging the steering path curvature at the beginning of the time step with the 

steering curvature at the end of the time step. It is assumed that there is a linear relationship 

between the steering effort and the geometric curvature of the path that the vehicle will drive. 

The relationship can be equated as follows: 

 *path effortk K SteeringEffort= . (4.12) 

This is a simple mapping given the steering effort value from -100 to 100%, and the 

constant effortK , determines the effective curvature of the path the vehicle will drive. As long as 

the front wheel steering angle remains significantly less than 90 degrees, then this assumption 

will be valid. On the NaviGator the mapping constant was measured to be: 

0.0016 / *effortK effort m= . 

Since the geometric curvature is simply the multiplicative inverse of path radius, the new 

vehicle position and orientation may be calculated once the curvature is known. For the model, it 

is assumed that the average curvature over the time interval is effectively what the vehicle will 

drive, because the change in curvature in each planning step tends to be small, this assumption is 

relatively benign. Also, if the average curvature is found to be very small, then it is assumed that 

the vehicle is simply driving along a straight line, and so the new position and orientation state is 

calculated as such. However, if the average curvature is outside of the straight assumption 

threshold, then the new state is extrapolated along a circular arc, with radius equal to the inverse 

of curvature. Both the straight line and circular projections assume that the vehicle speed is 



 

96 

constant over the time interval τΔ . Here the equation for calculating the new state position along 

a straight line of motion is: 
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The state yaw angle θ  is measured in global coordinates where true North is equal to zero, 

and East is 90 degrees. Therefore equation (4.13), calculates the new x position using the 

sin function and the new y position using the cos function. 

The new position along a circular arc is calculated using a somewhat more lengthy 

equation. This is done when the average curvature exceeds the straight line approximation 

threshold and is given by, 
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For implementation in the NaviGator RD, a curvature threshold: 0.01thresholdk = was found 

to work well. 

During node expansion the traversability arc cost is calculated by analyzing the vehicle’s 

state transition through the grid as it moves from its starting position and orientation to its end. 

This is done by measuring which values it encounters and then calculating an average over the 

interval. The grid values encountered during a state transition from one point to another are 

found by assuming the vehicle moves along a straight line from the start point to the end point. 

Since the grid resolution is somewhat low, 0.5 m by 0.5 m, this assumption is valid, because the 

pixel values touched by the state trajectory would vary little between a short circular arc path and 

a short straight line path, which is mostly the case. Bresenham’s line algorithm [BRE63] is used 
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to determine which pixel values to measure along the state transition line. This algorithm is 

highly optimized for calculating the pixel coordinates of a straight line through a rasterized 

image space, and so it is very desirable for this implementation, where thousands of small lines 

need to be measured during each search. 

One option the operator has when executing the RD component, is to plot the image 

coordinates in the traversability grid, which are measured during the HRHC algorithm. This 

allows for the effective search space to be analyzed at runtime. Figure shows the result of this 

plotting within a sample traversability grid on the left. As shown, the HRHC routine creates a 

tree like structure of possible state trajectory paths through the local environment. This structure 

corresponds to the quantized control inputs which are generated and extrapolated through the 

vehicle model. By analyzing this area searched by the algorithm it is possible to gauge the 

optimality of the solution trajectory. If the area searched both relatively large and dense, then the 

solution path should be the minimum of all paths within that area, and therefore has been 

weighed against many possibilities. However if the searched space is sparse, then the solution 

may be poor, because not enough other possible solutions have been checked to verify than 

nothing better exists. This is one of the key methods used in tuning the HRHC algorithm. 

Parameters such as the number of quantized input commands, horizon time, and planning time 

step, are tuned so that the search will be as broad as possible, while still remaining fast enough 

for real-time execution. 

Finally, after a solution trajectory has been found, it is traced back from the goal node to 

the root node via the parent node pointers. The node directly before the root node is reached, 

contains the control input value that is then used as the steering command for the iteration of the 

control loop. At this point the HRHC algorithm is complete. 
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The next step in the overall process is to execute a simple PID controller to maintain the 

desired vehicle speed. This controller produces two mutually exclusive commands. One is for the 

throttle and the other for the brake actuator. They are found by executing the PID controller 

given the set point speed, and the current vehicle speed feedback, in order to determine a value 

called the linear control effort. If the effort is positive, then it is multiplied by a throttle gain 

value, which determines throttle command sent to the PD. Also if the linear effort is positive, the 

brake command is simply set to zero. Conversely, if the linear effort value is negative, then it is 

scaled by a brake gain, and then delivered to the brake, while the throttle value is held at zero. 

The general PID controller form is modified slightly with a feed-forward gain ffk , and a constant 

bias value effortb . This linear effort control value effortL  is calculated by: 

 v
effort p v i v d ff desired effort

deL k e k e dt k k v b
dt

= + + + +∫ . (4.15) 

Where , ,p i dk k k  are the PID gains, ve  is the instantaneous velocity error, and desiredv  is the 

instantaneous desired velocity. The linear effort value requires a constant bias value in order to 

maintain a positive brake command when the remaining terms are zero. The throttle and brake 

commands are then calculated as 

 

if 0
0 otherwise

if 0
0 otherwise

t effort effort
effort

b effort effort
effort

k L L
T

k L L
B

>⎧
= ⎨
⎩

<⎧
= ⎨
⎩

. (4.16) 

The constant control parameters used for the RD implementation on the NaviGator are: 

 15.0, 6.7, 20.0, 15.0, 57.5,  0.65, 1.3p i d ff effort t bk k k k b k k= = = = = − = = − , 
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and to prevent integral windup, the velocity error integrator is limited to 4.9± . This keeps the 

vehicle from large over or undershooting of the desired velocity, if it is greatly disturbed, from 

terrain or other unexpected external forces. 

After the PID controller is finished determining the steering and throttle commands, the 

complete wrench effort structure, containing the steering, throttle and brake commands, is ready 

to be sent on to the PD. This step is done by wrapping the values into the JAUS set desired 

wrench effort message, and then transmitting the corresponding data packet to the PD. This 

functionality is provided through the data structures and API functions linked to the RD 

application by the CIMAR JAUS libraries discussed above. 

Faults and Failure Modes 

The Reactive Driver control loop has several built-in fault detections, for conditions that 

may persist and can cause the system to fail. The first condition occurs when an obstacle or 

group of obstacles causes the planning search not to be able to find a solution trajectory. In this 

case the vehicle would inevitably have to collide with the obstruction if it were to continue on 

course. In order to avoid this possibility, the control loop detects the obstruction by observing 

that the HRHC solution passes through an obstacle, and slows the vehicle down. By doing this, 

the vehicle is free to make more evasive maneuvers because it is has more mobility at slower 

speed. In the case where the vehicle continues to slow until it comes to a complete stop, and still 

cannot find an unobstructed solution, then the RD goes into a fault state called “Blocked”. This 

means that the vehicle is essentially stuck in place and must either wait for the obstruction to 

clear out of the way or it must reverse to find a different course.  

The Blocked condition tends to occur more than other errors in practice and testing, 

especially during navigation in harsh environments, such as off-road terrain. The causes for these 

blockages usually are false positive obstacles detected by one or more of the system’s Smart 
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Sensors, while operating on a narrow road or corridor. This forces the system to believe it cannot 

find an unobstructed solution, while in reality, there is nothing in the way.To overcome this 

problem in practice, a “Nudge” mode was built-in to the control loop, where the system would 

move forward slightly after being Blocked for a short period of time. Most of the time this had 

the effect of clearing the false positive in the traversability grid, and the NaviGator would 

continue on course. Often a light obstacle, such as a high patch of grass, or stick would cause the 

blockage and the vehicle would simply push over it unharmed. 

Another failure mode may occur when there is some coupling between the vehicle 

dynamics and the traversability grid, input path, or goal point. This problem was discovered 

during an experimental implementation of the RD component on an Air Force Research 

Laboratory (AFRL) autonomous vehicle. In that experiment, the goal point for the HRHC search 

was set to be a fixed distance from the vehicle, and explicitly dependant upon its instantaneous 

heading. This distance and heading dependency caused the planner to repeatedly obtain the same 

trajectory and control solution. In this case, the initial control action was often opposite the 

desired motion. The first control command in the solution sequence would usually be intended 

by the planner to make a slight course correction, in order to find a more desirable path. This 

made the HRHC solution unpredictable and caused the vehicle to be unstable. The problem was 

corrected by removing the explicit dependence on the vehicles heading when calculating the goal 

point, thus allowing the algorithm to obtain a unique solution upon the following control loop.  

Lastly, this implementation of a Receding Horizon Controller does not make use of a 

locally stabilizing control law. They are often used in RHC to drive the system inside of the goal 

region, and also in the stability analysis, to determine a terminal state cost penalty. The reason 

for this is that the system is not designed to ever reach the goal region. Upon each control loop 
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the goal region is recalculated at a point further along the desired trajectory than in the previous 

iteration. This cycle continues until the vehicle reaches the end of the path. In this scenario, the 

size of the goal region tends to be much smaller than the scale of the entire motion path, so it is 

reasonable to simply stop the vehicle at any point within the goal region, rather than driving it as 

close as possible to the goal point. Therefore, in practice the vehicle is simply halted, and the 

steering command is set to zero, when the goal region is reached, and so no locally executed 

control law is needed. 

Conclusions 

This Chapter has detailed the application and implementation of the theoretical concepts 

introduced in Chapter 3, and also introduced some new thoughts and considerations for obstacle 

avoidance in the optimization problem. Specifically addressed in the implementation overview, 

is the Reactive Driver component of the NaviGator’s control system. This component employs 

the new and novel Heuristic Receding Horizon Controller, introduced in this dissertation as a 

means to simultaneously plan and control an autonomous vehicle through a cluttered 

environment.  

As highlighted in the fourth section, there are a number of steps and procedures that must 

be addressed before execution of the HRHC algorithm. Some of these steps require ad hoc 

implementations, such as determining the goal region for the search. Also, there are some steps 

which require optimized data structures, and advanced knowledge of computing methods, such 

as the heap stack design, used here for the A* implementation. 

The new planning and control method, which has been shown to unify two tasks into one, 

comes with some disadvantages as well. The fifth section, has mentioned some of the known 

faults and failure possibilities that this technique may present. Although, many are avoidable and 
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predictable, there is an inherent unknown when working with such a new technology that still 

requires a sufficient amount of testing and learning, in order to truly apply it in practice. 

The following chapter is dedicated to some of the testing that has been done on this new 

and novel technique. It highlights and discusses the data and results collected, which help to 

support this thesis, and demonstrate the capabilities of both the theory and implementation 

discussed.
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Table 4-1: RD’s ready state control loop step by step procedure. 
Step # Step Procedure 
1 Update information and local variables from incoming service connection data streams. 
2 Check for system communications or PD faults. If any exist, then switch the RD into the 

Emergency State. 
3 Check operator Run / Pause command. If Pause, then switch the RD into the Standby 

State 
4 Determine the current path segment which the vehicle is attempting to navigate, based 

upon the systems newly updated position value. 
5 Determine the current instantaneous desired speed from the RD’s input motion path file. 
6 Calculate the current goal region for the Receding Horizon Controller, based upon the 

input motion path, the planning time horizon, and the current desired speed. 
7 Dilate the traversability grid received from the Smart Arbiter into a new grid which will 

be used for planning by the RHC routine. 
8 Execute the HRHC algorithm given the current desired speed, goal region, vehicle state, 

and dilated traversability grid. Obtain the desired steering command based on this 
algorithm. 

9 Execute speed PID control loop in order to calculate the current desired throttle and 
brake commands. 

10 Wrap the current desired steering, throttle and brake commands into a JAUS set wrench 
effort message, and send the message to the Primitive Driver for execution.  

11 Repeat procedure, starting at Step 1. 
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Figure 4-1: The NaviGator high level control system block diagram. The system is made up of 

four key elements, highlighted in red, orange, green and blue. They are the: control, 
intelligence, planning, and perception elements respectively. 
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Obstacle

Vehicle

Desired 
Motion PathMultiple Equal 

Solution Paths  
Figure 4-2: Simple obstacle avoidance case, showing a vehicle attempting to track a straight line 

and a single obstacle existing on the center of that line. This case intuitively shows 
that there may exist multiple and equivalent minimum cost state trajectories, yielding 
different but equal control input sequences as a result of the RHC optimization 
process. 
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Figure 4-3: The traversability grid concept. The local environment, depicted (above), with a 

corresponding traversability grid (below).  Both images are conceptual 
representations of both the real world local environment around the vehicle at the 
center, and its mapped grid values respectively. 
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Figure 4-4: Path tracking error system. The tracking metric is made up of two measurements. 

The cross track error measurement, XTrack, is the perpendicular position error of the 
vehicle with respect to the path. The heading error measurement, Herr, is the heading 
error angle of the vehicle with respect to a path tangent. 
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Figure 4-5: Traversability grid dilation before (left) and after (right). The grid on the right is 

dilated with a circular kernel with radius 2.5 pixels. 
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Figure 4-6: Planning and control search area, sample traversability grid outputs. The pink region 

(left) shows the area searched by the A* optimization routine, in order to determine 
the solution sequence trajectory shown in black. The image on the right shows the 
optimal predicted trajectory with no obstacles surrounding the path sequence. 
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CHAPTER 5 
TESTING AND RESULTS 

The receding horizon controller described in this dissertation has been implemented and 

tested in several different forms. The first version implemented was designed for the 2005 

DARPA Grand Challenge competition. Several lessons learned were gained from working with 

and testing that implementation. The most important one them is that the motion stability of the 

RHC is highly coupled to the system model and the optimality of the calculated control 

sequence. This unfortunately means that there are few gains or parameters that can be tuned to 

adjust control stability. Simply put, if the system model is drastically incorrect or the 

optimization routine cannot find an admissible solution then the system will be inherently 

unstable. At that point, either a new more accurate model must be introduced and or the 

optimization algorithm must be enhanced. 

The second version was implemented on an Air Force Research Laboratory (AFRL) 

vehicle at Tyndall AFB. The vehicle, known as the Land-Tamer, is a skid-steered hydraulically 

actuated platform. Therefore, the vehicle model used for the RHC implementation was 

significantly different from the one used for the NaviGator vehicle. Several lessons were learned 

from this implementation. The main one discovered was the state-goal coupling instability 

failure, which was discussed in Section 5 of the previous chapter. 

The latest version follows directly from the discussion of the previous chapter and is the 

one being tested and reported on here. This implementation is the most inline with the theoretical 

approach detailed in Chapter 3. The CIMAR NaviGator vehicle and the computing machines 

within will serve as the general test bed and provide a single platform to eliminate any variation 

between implementations on different machines. It is assumed that if the claims made within this 

dissertation can be supported by implementation and testing on the NaviGator vehicle, then they 
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would in turn be validated for other similar AGVs. Although, it should be understood that any 

methods tested here would almost certainly need to be modified and or tuned to support the 

vehicles upon which they are operating.  

Before infield testing of the implemented RHC algorithm, a test plan was established for 

organizational purposes. The first section of this Chapter outlines and explains the test plan for 

data collection and analysis of results. The plan has since been conducted and a post test review 

is given in the second section. Finally, the data results are presented and some conclusions are 

drawn in the third section. 

Test Plan 

The following test plan establishes and outlines a means to collect experimental data and 

results that can either support or refute the primary new and novel concepts of this dissertation. 

The critical concept follows from Remark 1 of Chapter 3, which claims that RHC applied to an 

AGV inherently unifies the planning and control tasks. Traditionally these tasks have been seen 

as separate problems for autonomous vehicles. 

In order to support this claim, information and evidence must be collected that shows a 

single RHC process accomplishing classic controller-like capabilities such as: stabilization and 

regulation onto a predetermined motion structure, while also achieving convergence 

characteristics that can be identified by typical performance metrics. This means that 

measurements defining the system’s time response to step, ramp, and other motion commands, 

must be obtainable. In addition, separate tests must be conducted that show the same exact RHC 

task demonstrating planner-like capabilities. These include abilities such as: obstacle avoidance, 

and favoring desirable terrain. Data that corroborate these behaviors, such as object clearance 

distance and trajectory departure times, should also be presented. 
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One item of critical importance in testing these claims is the use of baselines or controls 

against which the aforementioned results can be compared. One valid baseline would be use of a 

classic AGV motion controller. Pure Pursuit [COU92], Vector Pursuit [WIT00], or a simple PID 

controller, have all been implemented in the past with success. A comparison of the RHC 

algorithm’s performance against one of these algorithms implemented on the same vehicle would 

offer a useful contrast to relatively score the new control algorithm’s value. If in addition, the 

RHC algorithm can be shown to achieve planner-like behaviors then clearly some value has been 

added to the overall control; an ability which by nature could not be provided by any traditional 

motion control scheme. To facilitate organization of the different tests that will be conducted 

Table 5-1 details the design, setup, procedures, and data collection for each part. 

Test Review 

The tests detailed in the previous section, were conducted on Friday September 15th 2006, 

at the Gainesville Raceway Road Course (Figure 5-1). This location was selected because it 

offers a controlled on-road operating environment for the vehicle, and its seclusion makes it a 

very safe place to run the NaviGator. 

Since the NaviGator is a large and heavy vehicle, safety is very important during its 

operation. If the vehicle becomes unstable, or goes out of control, it is critical that no person is 

nearby, because the behavior of the system would be unknown. The road course allows a robust 

test to be conducted, with few observers and operators needing to be present. Also, in the event 

that a problem does occur, the NaviGator is equipped with a rugged wireless kill switch system, 

which shuts down the engine, releases its emergency brake, thus assuring that it will come to a 

stop. The kill switch system also has a run / pause signal which is used to start, stop, and pause 

mission execution from a safe distance. At the Gainesville Raceway, the vehicle’s kill switch can 
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be controlled from a single static base station. This is because there is continuous line-of-sight to 

the NaviGator no matter where it is on the course. 

The test location also offers a near limitless variation of path geometry that may be 

constructed for any given test run. There are a number of different smooth curved track 

segments, many with different radii, and also long straight-aways, both of which allow for good 

testing of tracking performance, and meet the criteria of the test design above. 

More importantly, the track allows the observers and operators to visually gauge the 

vehicle’s performance in real-time. Since the designed path geometry is known ahead of time, it 

is clear that by observing the vehicle on-road, it is executing the correct mission. A motion path 

executed over an area with no clear landmarks or road geometry, makes mission observation 

uncertain at runtime, and only by observing tracking data, can it be made clear whether or not the 

vehicle executed the mission correctly. 

The conducted tests required several days of setup and preparation prior to being able to 

run them and collect valid data. The first step in this setup process was to create a map of the 

racetrack. This was done by logging global position system (GPS) data of the NaviGator while it 

was driven manually around all of the different parts of the course. Once collected, the data was 

post processed and loaded into Mobius, an Operator Control Unit (OCU) software application 

developed by Autonomous Systems Inc. Within Mobius, the GPS data of the track was used to 

create a map, so that motion path segments of the test mission could be drawn by hand over the 

computer modeled track. The path segments drawn were designed to follow the test plan intent 

and layout detailed in  

Table 5-1. These segments were then saved to a flat file, in the format accepted by the 

NaviGator’s RD component, and uploaded to the vehicle control computing node. 
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The conditions during test runs were nominal. The weather was fair, allowing for the 

mechanical systems of the vehicle to run without any problems, such as overheating or rain 

interference with system sensors. However, one problem presented with the onboard GPS system 

throughout the day. This was observed when the vehicle was noticed to drive along a different 

lateral position on the road course during each individual test run, even though the mission path 

file was held constant. This behavior is typical because the GPS solution position will tend to 

drift slowly throughout the day as the GPS satellite constellation continuous to change overhead. 

However, the GPS solution on the day of the test drifted to an extent which caused the vehicle to 

drive adjacent to, and not on the road. Although, it remained clear that the vehicle was still 

attempting to drive, the correct path as sensed by GPS. The problem was analyzed and isolated to 

the onboard position system, because the control error never reached a value greater than a few 

meters, while at the same time the vehicle was visually observed to be off track by 

approximately 10 meters. Therefore, the problem had to be within the GPS data. 

The obstacle avoidance portion of the tests was also successful. However, since the 

vehicle’s position estimate continued to change over time, it was difficult to place the 

obstructions along the path so that the vehicle would encounter then head-on during any given 

run. One lesson learned from this, is that it is best to use very large obstructions when testing OA 

with position uncertainty. The obstacles used were construction barrels approximately 0.6 meters 

in diameter, which was found to be somewhat too small to test with while position system errors 

are on the order of several meters. Nevertheless, the vehicle was found to avoid the obstacles, 

when encountered, and the data presented in the following section supports this find. 

Test Results 

The first step in the test given the plan above is to design a path circuit for motion tracking. 

As aforementioned, this was done using the Mobius software tool. The path circuit designed for 
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the tests indeed does satisfy the requirements presented in the test plan. It is made up of segments 

both straight, and curved, with the curved portions having varying radii. The road course at the 

test site greatly facilitated this design. The segments were easily mapped over a subset of the 

track and lie near the center of the actual road pavement. 

The decided upon path segments and their geometry is depicted in Figure 5-2. As shown 

there are 11 segments, 5 straight and 6 curved; they are numbered in order of intended motion 

tracking. The curved segments tend to decrease in radius as the circuit progresses from start to 

finish, and thus making tracking more and more difficult as the vehicle pursues the mission. The 

last segment is a large arc included simply to bring the vehicle back to its starting position on the 

course. Also, notice that there is a discontinuity between segments number six and seven. This 

was purposely built into the circuit in order to test the system’s response to an instantaneous step 

in cross track error. Since both segments have the same orientation, the cross track error is 

isolated and its response can be measured. 

The data making up the path file for the test is summarized in Table 5-2. For each of the 11 

segments, the starting point latitude and longitude are given, along with the endpoint latitude and 

longitude. The radius values shown in the table were calculated as the multiplicative inverse of 

the segment curvature specified in the path definition file. Also each segment has an associated 

desired speed value, which is not shown in the table, but was set to 4.5 mps for the test. This is a 

nominal speed for the NaviGator and allowed for the effect of speed variations in testing to be 

minimized. 

The first series of tests are intended to establish tracking results for the designed path 

circuit using a classic vehicle motion controller on the NaviGator. This is done in order to 
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determine a set of baseline metrics that may be compared to the measurements found for the 

RHC algorithm that is executed in the RD component. 

The classic method decided upon for this test is a simple PD controller that regulates the 

two tracking states: cross track error, and heading error. The controller is used to determine the 

vehicle steering command, while it is operating at a constant speed along the path. By regulating 

the two tracking signals to zero, the vehicle is guaranteed to track the desired path.  

The controller was implemented within a component on the NaviGator, and took the place 

of the RD within the vehicle’s overall control system. The component is called the Global Path 

Segment Driver (GPSD), and takes as its input, the same global path segment file that is used for 

RD execution. Like the RD, it uses feedback from the GPOS and VSS components to measure 

the vehicle’s state in order to generate a control wrench message that is commanded to the PD 

component. Unlike the RD, this component does not receive wrench feedback from the PD, nor 

does it receive any traversability grids from the vehicle’s Smart Arbiter. For consistency, the PID 

speed controller within the GPSD was kept to be an identical copy of the one used within the RD 

component, thus canceling any effect speed control might have on the performance of the two 

controllers. 

The PD control algorithm is essentially two controllers summed together, which determine 

a wrench value somewhere between -100 and 100% steering effort. It is also modified slightly 

with a feed forward path curvature term in order to assist the controller with tracking curved path 

segments. The steering effort control value effortS  is thus calculated by:  

 effort xtp xtd hp hd ff k
d XTerr d HerrS k XTerr k k Herr k k s

dt dt
= + + + + . (5.1) 
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Where , , ,xtp xtd hp hdk k k k  are the PD gains for the cross track and heading error respectively, 

ffk  is the curvature feed forward gain, and ks  is the current path segment curvature. The gain 

values tuned into the NaviGator for this controller are: 

 7.0, 2.0, 45.0, 10.0, 625.0xtp xtd hp hd ffk k k k k= − = − = − = − = , 

and were determined qualitatively to produce stable desirable tracking motion. 

Three test runs were conducted, measured and logged for this controller. The data collected 

was logged at a rate of 10 Hz, the same rate at which the controller is executed. The first run was 

intended to measure the controller’s tracking performance along the path, given no initial 

significant error in either cross track or heading. It was setup by positioning the vehicle near the 

start point of the first path segment, and then switching the automatic control system on. The 

radio kill switch system mentioned above was used to start the NaviGator from a safe distance. 

Figure 5-3 shows the tracking position data logged from the first run of the GPSD. Due to 

the scale of the image, it is difficult to observe the fine details of the tracking performance of the 

vehicle. However, there are several distinguishable features that can offer some insight. In the 

plot, it can be seen that the vehicle begins slightly off track and then quickly stabilizes and 

converges onto the path. During most of the initial tracking, the vehicle is too close to the path to 

notice any difference between the two data sets, but after the 6th segment it is clear that the 

planned instantaneous step in cross track error is quickly regulated back close to zero. Lastly, 

notice that the vehicle tracking performance degrades significantly around the two tight turn 

segments 8 and 9. This is because the turn radii are very close to the NaviGator’s minimum 

turning radius, and it becomes very difficult for the controller to regulate the vehicle while it is 

so close to its operating limit. Nonlinear dynamic effects, such as input saturation tend to 

increase in their impact on performance during these scenarios. Also, the inherent delay in 



 

118 

steering angle, due to its natural rate limit, keeps the steering wheels from getting to the correct 

tracking position as soon as the segments are encountered. This is a classic problem with front 

wheel steered vehicles and their dynamical constraints. If the path being tracked is not second 

order continuous, then the vehicle is required to come to a stop at the discontinuity, so that it may 

turn its wheels to the correct position. Since the path segments designed here are continuous in 

both position, and heading, but not curvature, this phenomenon presents itself in the test. 

An anomaly discovered during data analysis and post processing can also be observed 

within the planned path itself at segments 8 and 9. Clearly there is a discontinuity between 

segments, although they were designed to be smooth. This is simply due to post processing, 

because the path data points were calculated from the vehicle’s location, cross track error, and 

heading. In the controller software the path segment transition happened prior to the intersection 

of the two segments and so a discontinuity is observed because the segments do not share the 

same curvature or center point location. 

Since the scale of the complete path circuit is too large to observe the full detail of tracking 

performance, a better set of data to visualize are the heading and cross track error signals. A plot 

of the heading error for the first test run of the GPSD is provided in Figure 5-4, it clearly shows 

more detail of the regulation performance for the PD controller. At this scale it is possible to 

observe the quantized nature of the heading feedback signal, due to resolution of the system’s 

heading sensor, the discrete values of the signal are identifiable within the plot. Clearly since the 

two tracking signals are coupled dynamically, the plot of the system’s cross track error appears 

similar, and is given by Figure 5-5.  

Notice that both signals indicate a large initial tracking error, a large disturbance at 

approximately 100 sec (due to the discontinuity between segments 6 and 7), and another large 
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disturbance at 125 sec (due to the tight turn segments 8 and 9). Also, both signals settle out and 

remain close to zero for the last sixty seconds. Rather than display and analyze both heading and 

cross track error for each test run, their inherent coupling allows only one to be studied to 

support the thesis. Therefore, for brevity, analysis of all test runs is focused only on cross track 

error, for this dissertation. Its resolution on the scale analyzed here is finer than the heading 

error’s, so it allows for clearer distinctions to be made. 

The second run of the GPSD tested its response to an intended very large initial cross track 

error. The purpose of this was to observe the PD controller’s reaction to an error value closer to 

the point of its operating envelope. Since the PD is a linear control system operating on a 

nonlinear system, its control region only a local neighborhood of the error system origin. Outside 

of that region the control system will inherently be unstable, and the system will fail. It is 

incapable of globally stabilizing the vehicle onto the path, or in other words, it cannot bring the 

vehicle to the path from any arbitrary point. A simple case can justify this concept. As the cross 

track error increases from zero to infinity, at some point it will completely dominate the 

remaining terms in the control equation (5.1). At this point, the steering effort will be saturated in 

one direction, and the vehicle will simply drive in a never ending circle, because the cross track 

error will never drop below the saturation value.   

The cross track error signal for the second run is depicted in Figure 5-6. Here the large 

initial cross track is shown to be -25 meters. Regardless of this, the system is indeed within its 

operating limits because the tracking error is quickly regulated and stabilized back close to zero. 

However, due to the controller’s linear capability, there is a large overshot of the path (7 meters, 

or about 30%) and again an undershot (2.5 meters) before it is reacquired. From that point on in 

the path mission, the tracking performance is very similar to the first test run. The disturbance 



 

120 

between segments 6 and 7 is rejected, and the error peaks to approximately 3 meters on the sharp 

turn segment 8 and 9. The large overshoot in this test run is highly undesirable since the vehicle 

traveled far off of the intended path after it was already reached. 

A final test run of the GPSD was conducted with an even larger initial cross track error 

than the second run. This was executed to demonstrate the unstable nature of the control system 

while operating outside of its acceptable range, and to observe its behavior during this mode. The 

expected behavior was that the system would drive in a continuous circle, however that was not 

observed. Instead, the vehicle turned almost completely around and started driving a direction 

opposite than what the path desired. This is most likely because the vehicle was still within a 

range that did not saturate the steering command, but was enough to create an unstable and 

unpredictable behavior. In Figure 5-7,notice that the cross track error begins to converge but is 

then interrupted and only reaches a minimum absolute value around 20 meters. 

The output signals from each test run were also recorded for control system analysis. 

Figure 5-8 provides the three signals: steering, throttle, and brake. All are mapped within the 

same plot because they all have a similar scale. Steering exists from -100 to 100% effort, while 

throttle and brake have a range of 0 to 100% effort. The steering signal is negative for left-hand 

turns and positive for right-hand turns. The steering signal clearly indicates all of the maneuvers 

and features encountered during the run. There is an initial response to the off-track starting 

position, each turn segment can be clearly identified from the large steps in the command, which 

occur due to the curvature feed-forward term in the controller, and the cross track step at 

segments 6 and 7 is seen as a step response in the steering shortly before the 100 sec time mark. 

Interestingly, there appears to be a slight bias in the steering control for long straight segments. 

This is most likely due to a small misalignment in the steering actuator system. 
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Speed control for the GPSD system worked well during the tests. The velocity control 

system response for the first GPSD test run can be seen in Figure 5-9. As indicated there are 

many disturbances in the signal, even though the command is held constant, the speed does not 

appear to reach a steady state. This occurs for several reasons. First, the current path segment 

geometry is changing regularly, so the steering wheels must turn often and thus upset the 

external forces acting on the vehicle. Second, the throttle, engine, and drive train dynamics are 

highly nonlinear. Continuous gear switching in the automatic transmission is one nonlinear 

effect, for example, which can cause the system to change response. Also, the resolution of the 

speed measurement is only around 0.1 mps, this may prevent the control system from any fine 

tuning that is required to achieve steady state. Despite this behavior, the measured speed remains 

within 0.5 mps of the desired most of the time. This is a very acceptable bound in practice. 

In summary of test part 1, the set of runs conducted with the GPSD component executing 

the PD controller described, yielded a complete set of baseline data needed for comparison to the 

RD algorithm. The controller performed as expected, stabilizing the vehicle’s motion onto the a 

priori path structure, and performing better on wide turns than on sharp turns. The expected 

unstable behavior for a large cross track error was also observed in the third run, and offers some 

insight to the limits of the algorithm.  

Test part 2 requires runs identical to the nominal cases of part 1 to be conducted using the 

RD component, which executes the new and novel receding horizon controller introduced in this 

dissertation. As a brief review, the RHC algorithm implemented on the NaviGator uses feedback 

information from the system state and environmental sensors, to simultaneously plan and control 

the vehicle’s motion on track and around obstacles. The output of the RD is a wrench command, 

containing the three steering, throttle and brake effort values, and is identical to the output format 
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of the GPSD. The test runs conducted here in part 2 measure the algorithm’s ability to regulate 

the path tracking of the segments given in Figure 5-2.  

For part 2, two test runs were conducted, measured and logged for this controller. The data 

collected was recorded at a rate of 10 Hz, the same rate at which the RD receding horizon 

controller is executed. Also like before, the first run was intended to measure the controller’s 

tracking performance along the path, given no significant cross track or heading error. 

Figure 5-10 shows the tracking position data logged from the first run of the RD. As 

before, the scale of the image makes it difficult to observe the fine details of tracking 

performance. However, the same distinguishable features are present after the 6th segment where 

it is clear that the planned step in cross track error is quickly regulated back close to zero. Also, 

the vehicle tracking performance degrades significantly around the two tight turn segments 8 and 

9, as expected and similar to the linear controller. The main difference between the GPSD and 

the RD observed here is that the RD tends to have a more prominent steady state cross track 

error. This is due to the nonlinear nature of the controller, input quantization, and system model 

inaccuracies. However, the performance overall remains quite acceptable for path tracking and 

regulation. 

The cross track error data for this run is a much better indicator of controller performance 

at the vehicle scale. Shown in Figure 5-11, the error signal interestingly corresponds closely to 

what was observed in the PD controller signal, with the exception that steady state error is larger. 

However certain performance features are almost identical to those observed in Figure 5-5, and 

Figure 5-6.  For example, the initial error quickly converges down to a value within 1 meter, the 

6 to 7 segment transition step and its response is clearly observable around 100 seconds, and like 

the PD controller, the RHC has difficulty maintaining close tracking during the sharp turns. The 



 

123 

peak error value around 3 m during segments 8 and 9 is analogous to the peak error observed in 

the linear controller. This data shows concretely, especially when compared to Figure 5-5, that 

there is no major tracking performance difference between the two controllers. The only 

distinguishable difference remains the cross track steady state error, which although is larger for 

the RD, is within acceptable limits for the task. Most likely it could be reduced further with some 

additional performance tuning. 

A more noticeable distinction between the PD and RHC controllers is identifiable in the 

second RD run data (see Figure 5-12). In this instance, the RD was given a large initial cross 

track error, approximately equal to that of the second run of the GPSD, about 25 meters. In this 

case, there is still an overshoot of the path, but not nearly as much as the one encountered for the 

GPSD. The overshoot seen here is approximately 1.5 meters, which is still within acceptable 

operating limits. This ability makes the RHC controller much more desirable than the PD 

controller, since fast and stable path reacquisition is one of the most critical performance 

qualities of an autonomous vehicle control system. After this portion of the test run, the 

performance remains nominal and similar to that seen in each of the previous stable runs. 

Figure 5-13 presents the output performance for the RHC controller. Here some significant 

differences in control can be observed between the classic PD controller and the RHC algorithm. 

The first noticeable difference is that the RHC steering output tends to oscillate in a square wave 

like fashion, especially during the wide turn segment times. This is caused by the artificial input 

quantization that must be done in order to allow the HRHC algorithm to find a solution in real-

time. The quantization does not produce a fixed set of discrete states for the steering value to 

occupy, because it is based off of the instantaneous steering feedback from the primitive driver 

component. Thus the quantization is recomputed ad hoc, within the node expansion function of 
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the A* search. Another clear distinction is that the RD uses much more command authority 

(steering range) than the PD controller, specifically during the initial convergence, and the sharp 

turning period. This is largely attributable to the lack of steering cost penalization within the 

value function of the RHC. However, this effect is not undesirable in practice since it allows for 

faster tracking and regulation of path motion. Conversely, the RD uses less control authority than 

the GPSD for small disturbance instances, such as the cross track step at segments 6 and 7. This 

is due to its higher steady state error tolerance, and lack of convergence effort within its goal 

region. 

For equality the speed control system performance of the vehicle during RD execution is 

presented in Figure 5-14. The plot is given for the first and nominal run of the RD, as with the 

GPSD plot. Similar to the previous speed controller performance graph, this figure shows the 

speed remaining with 0.5 mps of the desired speed, most of the time. Interestingly, the speed 

tends to converge during the later portion of the run. This is an example of the unpredictable 

nature of a nonlinear control system within its bounded stability region. It could have been 

caused by anything from a constant gear selection in the automatic transmission, to an activation 

of the vehicle’s onboard air conditioner, which is coupled to the engine dynamics through power 

generation equipment. Since these causes are not measured or modeled, they cannot and are not 

explicitly compensated for in the controller. 

As a final controlled comparison and summary of tests part 1 and 2, the response times, 

percent overshoot, settling times, and steady state errors, were recorded for the cross track error 

step between segments 6 and 7, for both the GPSD runs 1 and 2, and the RD runs 1 and 2. Table 

5-3 contains the values determined for each measurement. This side by side comparison analysis 

of the four step responses strongly supports the hypothesis that the RHC algorithm can 
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effectively regulate an autonomous ground vehicle onto a predetermined motion structure. While 

there appear to be some quantitative tradeoffs between the two controllers, it is evident from both 

the plots above and the table, that new RHC controller response is stable, effective and its 

response is able to be measured in the same way as a classical controller. Clearly by tuning it is 

possible to change the numerical results presented here. Therefore their purpose is only to show 

that the two controllers are comparable and within some tolerance of one another, which it 

indeed does. 

The third test part is intended to demonstrate the Obstacle Avoidance (OA) capability of 

the RHC algorithm, something which cannot be provided by a classic style controller, and to 

offer an analysis of the collected OA data. The data was collected over a single run of the RHC 

controller on the same test track as the previous two parts. Along with the signal data typically 

collected on each run, traversability grid images, which are output by the RD as a development 

and debugging tool, were recorded. These images were logged remotely by a standalone 

visualization component at a rate of 3 Hz, an arbitrary value. 

Unfortunately, post processing of the tracking data from this test revealed significant 

position system problems during the run. There are several visible jumps in the vehicle’s 

estimated position, and as a result, it is difficult to detect where in time the vehicle deviates from 

the prescribed path in order to avoid an obstruction. Nevertheless, there were a total of four 

obstacles placed on the path prior to the run, and the NaviGator was able to avoid them. The four 

objects were large construction barrels, which are easily detected and mapped into the 

traversability grid by the NaviGator’s Smart Sensor components. The logged traversability grid 

data shows the avoidance much more apparently than the position and error signal data. 
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As in the previous two test parts, an overview of the vehicle’s track position data is 

presented in Figure 5-15. Here it can be seen that the vehicle deviates from the path at the four 

obstacle locations, each of which is called out. Position system uncertainties are clearly present, 

especially around segment 7, which indicates a strong estimate drive to the North. 

The detail of the run is identified in Figure 5-16. Again the four obstacle avoidance 

maneuvers are called out in the diagram. In these portions of the mission, the vehicle clearly 

deviates from the intended tracking, as anticipated. Also, the large jumps in position estimate are 

called out and circled in blue. These are not control system related, and instead are caused by 

solution discrepancies within one of the two onboard GPS receivers.  

The obstacle avoidance of each of the four barrels is most apparent in the traversability 

grid images, as mentioned. Figure 5-17 provides these grid images, and indicates the results of 

the RHC optimization routine; at or near the time each object was passed by the NaviGator. The 

barrels appear as red or orange circles in each image, and were dilated by a radius of 3.5 pixels, 

so the vehicle would have enough clearance to maneuver around them during the run. Other 

large red or orange areas in the images indicate surrounding terrain or trees, and are not in the 

way of the vehicle while it is on track.  

Some of the images have spotting artifacts in them which are attributable to instantaneous 

jumps in the position solution, which causes sensed data to be placed in the wrong grid location. 

However, since the position between the obstacles and vehicles is relative, their relative position 

in the grid remains constant, and the RHC algorithm is able to consistently steer the vehicle 

around the true obstacles. 

Also, as discussed in the previous chapter, the pink region in the grid indicates the possible 

solution trajectories that were explored during optimization, and the black or white line shows 
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the final trajectory selected. The pink lines on the grid edges are new spaces which the vehicle is 

moving towards, but has yet to populate with any environment estimate. 

In summary of test part 3, the NaviGator was given a path mission identical to the previous 

two tests. The vehicle performed as expected, avoiding all four of the encountered obstacles and 

also maintaining adequate path tracking while in free space. These data and results of this part 

therefore support the hypothesis claim that RHC applied to an autonomous ground vehicle 

allows planning and control to be done simultaneously. 

The next chapter focuses on the overall results and conclusions which can be drawn from 

this dissertation. It also details some of the advanced concepts, which are outside of the scope 

here and also some future work that can be done to progress this research area. 
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Table 5-1: The receding horizon control autonomous vehicles test plan. The test plan is made up 
of a hypothesis and three main parts: one for control, another for the RHC algorithm 
itself, and lastly a part to test Obstacle Avoidance. 

Part Label Part Explanation 

Test Purpose Establish RHC algorithm’s ability to unify planning and control for 
autonomous vehicle motion, and to compare the algorithm’s performance 
against a classical linear controller. 

Hypothesis RHC applied to an autonomous vehicle inherently unifies the planning and 
control tasks, so that they may be executed simultaneously. This allows a 
single task to accomplish motion state regulation and also provide obstacle 
avoidance capability. 

Expected Results 
 

The RHC algorithm will exhibit robust tracking performance and will be less 
susceptible to large disturbances than the classic linear controller. However, 
the linear controller will probably prove to track better than RHC, under 
nominal conditions, because the RHC algorithm is inherently suboptimal due 
to input quantization and other factors such as system dynamics model 
inaccuracies. As an addition, the RHC method will also be able to avoid 
obstacles, whereas this behavior is impossible for the linear controller. 

Part 1, Purpose 
 

Measure classical linear path tracking controller performance as a control for 
the hypothesis. 

Part 1, Design 
 

The vehicle will attempt to track an obstacle free path using a classical 
motion controller. The path will be provided as a preset circuit made up of a 
variety of straight line segments and curved segments of different radii. The 
use of a circuit track will maximize the collection of data per given test run, 
which is beneficial since the time and preparation required to setup a single 
run is nontrivial. The circuit will be designed such that the system should be 
able to reach a stable steady state on one segment before the next is reached. 
For each new segment encountered on the path, there will be a discontinuity 
in curvature, heading, or cross track error. These discontinuities will allow 
for time domain step response measurements to be made. The test will be 
executed and logged at a nominal speed, in order to isolate the effect of 
velocity on tracking performance. The test will then be repeated with a large 
initial tracking error, in order to measure the controller’s ability to reacquire 
the path. 

Part 1, Logged 
Measurements 
 

Error Signals: Cross Track Error, Heading Error, and Speed Error. 
Input Signals: Desired Vehicle Position, Heading, and Speed (all from input 
path).  
Output Signals: Steering, Throttle and Brake Actuator Commands. 

Part 2, Purpose Measure the RHC algorithm’s path tracking control system performance. 
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Table 5-1: Continued. 
Part Label Part Explanation 

Part 2, Design 
 

The vehicle will attempt to track an obstacle free path using the RHC 
algorithm detailed in Chapter IV. All test tracks, speeds and procedures will 
be identical to that of part one in order to maintain equality between the two 
tests. The test will then be repeated with a large initial tracking error, in order 
to measure the RHC ability to reacquire the path. 

Part 2, Logged 
Measurements 

Error Signals: Cross Track / Transverse Error, Heading Error, and Speed 
Error. 
Input Signals: Desired Vehicle Position, Heading, and Speed (all from input 
path).  
Output Signals: Steering, Throttle and Brake Actuator Commands. 

Part 3, Purpose Measure the RHC algorithm’s planning ability. 

Test Part 3 
Design 
 

The vehicle will attempt to track the same path circuit as the previous to test 
parts with the addition of obstacles. The obstructions will be placed such that 
tracking the path on center would cause an impact, therefore the vehicle must 
depart from the current path segment in order to avoid collision with the 
obstacle. The obstacles used for this test will be lightweight construction 
barrels, which are easily detected by system sensors and safe in the event of a 
collision. 

Test Part 3 Data Error Signals: Cross Track / Transverse Error, Heading Error, and Speed 
Error. 
Input Signals: Desired Vehicle Position, Heading, and Speed (all from input 
path).  
Output Signals: Steering, Throttle and Brake Actuator Commands. 
Other data: Obstacle Clearance Distance (Minimum distance observed 
between vehicle and obstacles) 
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Table 5-2: Test path circuit specification data. The 11 path segments for the control system tests 
described in this Section are given with a start point, and end point latitude and 
longitude. The segment radius is calculated as the multiplicative inverse of the 
specified curvature. Positive curvature values indicate a leftward turning segment and 
negative values indicate a rightward turning segment. 

Segment  Start Lat (deg) Start Lon (deg) End Lat (deg) End Lon (deg) Radius (m) 

1 29.75262026 -82.26275871 29.75340236 -82.26275587 ∞ 

2 29.75340236 -82.26275587 29.75376698 -82.26318436 40.0 

3 29.75376698 -82.26318436 29.75336974 -82.26361331 41.7 

4 29.75336760 -82.26361326 29.75268459 -82.26361854 ∞ 

5 29.75268459 -82.26361854 29.75247728 -82.26383552 -23.3 

6 29.75247705 -82.26384131 29.75248487 -82.26467643 ∞ 

7 29.75250188 -82.26473602 29.75250472 -82.26565011 ∞ 

8 29.75250472 -82.26565011 29.75240730 -82.26576274 10.9 

9 29.75240730 -82.26576274 29.75231923 -82.26567174 9.8 

10 29.75231897 -82.26566695 29.75228804 -82.26321990 ∞ 

11 29.75228804 -82.26321990 29.75260181 -82.26277899 43.5 
 
 
 
 
Table 5-3: The time based step response metrics recorded between segments 6 and 7 in all of the 

stable test runs. The values vary between controllers, but remain comparable. 

Run Label Response 
Time (sec) 

Percent 
Overshoot 

Settling 
Time (sec) 

Steady State 
Error (m) 

GPSD Run 1 4.3 38.4 20.8 -0.34 
GPSD Run 2 4.4 39.7 20.4 -0.28 
RD Run 1 8.6 8.3 20.6 -0.67 
RD Run 2 8.8 0 19.7 -0.79 
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Figure 5-1: An aerial photograph of the Gainesville Raceway road course. The track has a variety 

of geometry that allows for accurate and controlled testing of an autonomous ground 
vehicle. 
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Figure 5-2: The path segments designed for the testing conducted at the Gainesville Raceway 

road course. A total of 11 segments make up the course, each with varying curvature. 
They are plotted over a geo-referenced global grid. 
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Figure 5-3: The position data collected from run 1 of test part 1. Both the vehicle’s position and 

the planned path geometry are plotted over a geo-referenced grid. 
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Figure 5-4: The logged NaviGator heading signal from test part 1 run 1. The signal starts off with 

an initial error value around 0.25 radians, and then regulates close to zero. There are 
disturbances during the 6 to 7 segment transition and at the sharp turn portion of the 
track. 
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Figure 5-5: The cross track error signal from run 1 test part 1. The cross track error is initially 

around 4 meters and then converges toward zero. A disturbance is introduces at 
approximately 100 seconds, and the sharp turn creates a few large peaks shortly there 
after. The system is shown to track well here with steady state errors averaging less 
than 0.5 meters. 
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Figure 5-6: The cross track error signal from test part 1 run 2. There is purposely a large initial 

error, about 25 m, which is quickly regulated away by the PD controller, and the 
system remains stable. The remaining parts of the mission are executed in a fashion 
very similar to run 1, which is indicated by the timing and magnitude of the signal 
shown here. 
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Figure 5-7: The cross track error signal from test part 1 run 3. The initial signal is two large for 

the PD controller to regulate and therefore causes the system to stay at -20 meters. 
The run was only conducted for approximately 30 seconds and then terminated for 
safety concerns.  
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Figure 5-8: The output of all three wrench effort signals: steering throttle and brake, during run 

1, test part 1. The steering signal is mostly smooth, with sharp discontinuities at 
segment transitions where curvature feed-forward dominates. The speed control 
signals are given for reference and demonstrate the speed system’s limit cycle like 
behavior. 
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Figure 5-9: The speed controller performance data logged from run 1 test part 1. Notice that the 

speed measurement reaches an oscillating but stable limit cycle, even though the 
command remains constant. This is attributable to power train system nonlinearities 
and complex dynamics. 
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Figure 5-10: The position data collected from run 1 of test part 2. Both the vehicle’s position and 

the planned path geometry are plotted over a geo-referenced grid. This run’s 
performance data is very similar to the previous controller, with the exception of a 
larger steady state cross track error. 
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Figure 5-11: The cross track error signal from test part 2, run 1. Similar to the previous cross 

track signals, shown here is the system’s performance while using the RD receding 
horizon controller. There is a discontinuity around 100 seconds, due to path step 
input, and also a large error peak due to the last sharp turn at 125 seconds. 
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Figure 5-12: The cross track error log from run 2, test part 2. An intended large initial error is 

given, about 28 m. The RHC system regulates this directly down to near zero, with 
minimal overshoot. From this point on the controller performs almost identically to 
the previous run. 
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Figure 5-13: Each output signal logged during test part 2, run 1 (the nominal case). The steering 

control signal is much different than the one seen in the classic controller. It is much 
larger in certain cases and much smaller in others. One key feature is the input 
quantization, which is implied by the square wave like signals during the wide turns 
and long straight-aways.  
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Figure 5-14:  The speed control system data logged during run 1 of test part 2. Again the system 

demonstrates a stable limit cycle, as it did in the previous demonstration. This time 
the signal relaxes for a period, the cause of which is unknown. It is probably 
attributable to some nonlinearity in the system dynamics. 
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Figure 5-15: The position data collected from run 1 of test part 3. The obstacle locations during 

this run are called out with red leaders. Notice that the vehicle position deviates from 
the path around these areas. 
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Figure 5-16: The cross track error log from run 1, test part 3. The obstacle locations during this 

run are called out with red leaders. Notice that the error signal increases and then 
decreases at these points. Also a group of GPS position solution spikes are called out 
and circled in blue. 
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Figure 5-17: Four traversability grids recorded during run 1 of test part 3. Barrel 1 is avoided 

first (top left), then the 2nd (top right), the 3rd (bottom left), and finally the last barrel 
(bottom right). Free space is indicated in gray, with obstacles in shades of red and 
yellow. The pink region is space searched by the RHC algorithm, while the pink 
edges represent unknown space. 
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CHAPTER 6 
FUTURE WORK AND CONCLUSIONS 

This dissertation has introduced a new and novel planning and control scheme for 

autonomous systems. The method, called Heuristic Receding Horizon Control (HRHC) is used to 

simultaneously plan and control an autonomous system through its operating environment. Also 

a novel extension to classic Receding Horizon Control (RHC), called Dual-Frequency Receding 

Horizon Control (DFRHC) has been proposed. 

The focus and motivation for the two technologies has been established in Chapter I, along 

with an initial problem statement. Specifically, it is desired to establish a method by which an 

autonomous ground vehicle may control its own motion through a cluttered environment. 

Chapter II has reviewed much of the relevant literature published by other researchers in this 

field, and has thus helped to establish the technology’s uniqueness and niche within the realm of 

robotics and automation. The theory behind the HRHC and DFRHC concepts was offered and 

detailed in the third Chapter. In addition, the key proposal of this dissertation was summarized in 

Remark 1 of that chapter. Also both of the new and novel methods were implemented and tested 

on a real autonomous ground vehicle, the NaviGator, at the Center for Intelligent Machines and 

Robotics. The tested performance results for that implementation were given in Chapter IV, and 

were found to strongly support the theory and claims proposed. 

Some advanced ideas and concepts, along with some remaining work that can be done to 

continue this research in the future are offered in the first section below. They are followed in the 

second section with some of the detailed conclusions that can be drawn from studying the theory, 

implementation and testing results of this dissertation.  
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Future Work 

There are several concepts and advancements that can be made and tested for the RHC 

strategies of this dissertation. One comes from an implied hypothesis that both HRHC and 

DFRHC technique allow for RHC to be applied faster and more efficiently than a classic RHC 

optimization routine. While these techniques have been applied, tested, and shown to work on an 

electromechanical system, they have not been compared directly with a classic optimizer.  

For this hypothesis, the modified RHC routine would ideally be tested and controlled 

against one that uses traditional optimization methods: Branch and Bound, Quadratic 

Programming, etc. Since these algorithms are very time consuming and complicated to 

implement, performing a thorough analysis of the new RHC algorithm against a classic one has 

been determined to be beyond the scope of this dissertation. 

The testing would require measuring the computation performance of the algorithms 

themselves. Metrics that directly support the claim such as control loop frequency, bandwidth, 

and data throughput, can offer valuable input with regard to the algorithm’s efficiency and 

effectiveness. For example, since HRHC requires the expansion of state representing nodes, the 

number of nodes searched in the process is another very good metric to evaluate the algorithm’s 

efficiency, especially since the time performance and computation requirements are directly 

proportional to the number of nodes expanded. This type of testing would be very valuable to 

support the work begun in this thesis and offers a specific path for future research. 

Another conceptual area could be focused on finding more advanced and theoretically 

supported ways of input quantization in order to increase the solution optimality of the HRHC 

routine. As discussed in the previous chapters, input quantization is required for the A* search, 

but diminishes the quality of the overall control. Since the quantization is currently generated ad 

hoc; further research in this area could certainly make the control algorithm and theory stronger. 
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Finally, many optimization routines implemented for RHC are able to use the previously 

determined solution trajectory as a warm or running start for the next optimization attempt. Since 

the state describing variables tend to change only slightly between control loop iterations, the 

previous solution makes for a very good initial guess. The HRHC routine implemented in this 

thesis does not use this technique, mostly because the solutions were shown to provide 

satisfactory control, and the algorithm is able to maintain real-time performance. However, 

research into giving the HRHC routine a warm start, could offer increased efficiency, which 

would allow for more nodes to be searched and a more optimal solution to be found. This result 

could then let the algorithm be applied to even more complex systems. 

Conclusions 

Motion planning and controlling an autonomous ground vehicle are very challenging tasks. 

These tasks are difficult even when accomplished in two sequential steps, which is the 

conventional practice in design and implementation. This dissertation has studied, theorized, 

implemented, and tested the unification of the two tasks into one. It can be drawn from this work 

that their combination indeed offers a significant amount of engineering consolidation. This is 

especially true when faced with the often daunting system integration effort required to create a 

functional real world robotic system. All of the signals, interconnections, and validations that 

must be made between the otherwise two sequential processes are avoided. This single task 

therefore, allows for less time to be spent in the development phase of the implementation.  

One drawback in general is that the technology still needs some theoretical and practical 

hardening. It is not yet a tried and true methodology, and it is not simple. Even after the 

development stage, tuning a Receding Horizon Controller is difficult and vague. The engineers 

working with it must have a thorough knowledge of the system dynamics and nuances, as well as 

an advanced understanding of the underlying optimization routine. However, because the RHC is 
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more informed of the system dynamics, stronger control system performance can be achieved 

with the technique. Both system stability and robustness can benefit from the nonlinear 

capabilities of the controller. 

Finally, the theoretical concepts of this thesis have overall been in effort to help unify the 

two largely accepted approaches to advanced robotics, namely, the Artificial Intelligence (AI) 

approach and the Control Systems approach. The AI approach is mainly logical in nature, and is 

based around proving that theoretical methods will yield admissible results, or in other words 

results which are valid, predictable and consistent. The controls approach is largely mathematical 

in nature and is concerned with the system dynamics and proving that formulaic controllers will 

yield stable and convergent behavior. Clearly the two methods must be related somehow, since 

the end results tend to be very similar, and because of the strong connections that analytical and 

logical mathematics share. This dissertation has shown that for one particular control method, an 

AI approach, A* search, and a controls method RHC, can be unified if the problem is structured 

and cast in a particular way. This is an important result identifying that the two largely practiced 

approaches may be more related than they appear. 
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